Поскольку в ходе реакции образуется множество копий исходной молекулы ДНК, а обрыв цепи происходит случайным образом, в конце реакции получается набор молекул, обрывающихся на
ка
каж
кажд
каждой
каждой б
каждой бу
каждой бук
каждой букв
каждой букве
каждой букве (исходной последовательности).
Таким образом, секвенирование ДНК представляет собой воспроизведение исходной матрицы. Вы создаете миллионы копий разной длины, оканчивающиеся абсолютно на каждой букве исходной последовательности. Дальше нужно расположить эти фрагменты в порядке увеличения длины. Молекулы ДНК несут отрицательный заряд и поэтому, если вы поместите их в солевой раствор и подключите напряжение, ДНК будет двигаться к положительному электроду. Скорость перемещения зависит от массы фрагмента (от его длины): длинные фрагменты движутся медленнее, короткие быстрее. Если же вы поместите фрагменты ДНК не в солевой раствор, а в гель, и включите электрический ток, фрагменты ДНК разделятся в геле в соответствии с размером.
Но для проведения реакции нужно учесть еще кое-что. В ДНК всего четыре буквы (а не 26, как в английском языке), поэтому исходную ДНК нужно поместить в четыре пробирки. В каждую пробирку нужно внести все ингредиенты, но, кроме того, в первую добавить немного измененных оснований A, которые останавливают реакцию, когда в матрице встречаются основания A. Во вторую пробирку нужно внести все ингредиенты плюс небольшое количество останавливающих реакцию оснований C. То же самое с оставшимися пробирками для оснований T и G. Когда реакция завершается, у вас имеется одна пробирка, в которой все фрагменты заканчиваются на A, вторая пробирка с окончанием фрагментов на C, третья с окончанием на T и четвертая с окончанием на G. Если вы нанесете содержимое этих пробирок в четыре соседние лунки в геле и подключите напряжение, фрагменты разделятся в зависимости от размера, и вы сможете определить положение каждой буквы в исходной молекуле ДНК.
Например, первая колонка может выглядеть так:
*****AA**A*****A******A*A***A*
Вторая так:
**T*T**T**T*T*T*T*T*T****T*T**
Третья так:
C**C****C**C*********C*C**C**C
И четвертая так:
*G*********G*G**********
И если вы наложите друг на друга эти последовательности, то получите исходный фрагмент:
CGTCTAATCATCTGTATGTGTCACATCTAC
Если вы когда-нибудь видели по телевизору ученых с длинными листами с изображением множества черных полосок, расположенных ровными колонками, значит, вы видели именно это. Это последовательность букв в ДНК из наших клеток, которую мы не могли прочесть на протяжении четырех миллиардов лет, но теперь можем определить за считаные минуты и недорого. За изобретение этого замечательного способа чтения последовательностей ДНК Сенгер совершенно заслуженно получил свою вторую Нобелевскую премию по химии в 1980 году[10].
В 1990-х годах, когда в рамках проекта «Геном человека» предстояло определить последовательность трех миллиардов букв человеческого генома, метод Сенгера был видоизменен и автоматизирован. В главе 5 будет говориться о том, почему работа над проектом была столь сложной, и почему для ее выполнения потребовалось так много времени и денег. В 1990-х годах я был студентом и отправлял короткие фрагменты очищенной ДНК на анализ в специализированную лабораторию, занимавшуюся секвенированием, и несколько дней ждал результатов (не в виде красивых фотографий, а в виде компьютерных файлов). Теперь большинство генетических лабораторий имеют собственные приборы (секвенаторы) и за несколько часов считывают мегабайты информации. Появились новые технологии, которые не вытеснили метод Сенгера полностью, но позволили работать быстрее и с меньшими затратами, и если вы начинаете карьеру генетика в наши дни, возможно, вы лично никогда не воспользуетесь методом Сенгера. Уже существуют секвенаторы размером с колоду карт, которые подключаются к переносному компьютеру через USB, так что вы можете брать их с собой для полевых исследований и секвенировать геномы растений и животных прямо на природе. Все эти нововведения стимулируют революцию в генетике, которая коснется всех нас. К примеру, мы уже научились анализировать ДНК давно умерших людей.
В земле лежал давным-давно умерший человек. Может быть, его тело положили сюда родственники, или он здесь и умер, не подозревая, что станет одним из самых важных людей за всю историю человечества. Спустя много-много лет после смерти этот человек сделал две вещи. Прежде всего, обнаружение его костей в 1856 году стало толчком к изучению древних людей. Он жил на территории современной Германии, в долине Неандер, примерно 40 тысяч лет назад. Пещеры Фельдхофер, где нашли кости, больше не существует: она была разрушена при строительстве каменоломни.
Зато сохранились описания. Вход в пещеру находился на несколько метров выше уровня земли: узкий лаз вел в каменную комнату размером примерно три на пять метров, с высоким потолком. В этом месте археологами-любителями, а потом и профессионалами были обнаружены тысячи артефактов, включая останки как минимум трех человек. В уже упомянутом 1856 году рабочие каменоломен обнаружили несколько окаменелых костей: фрагмент черепа размером с подставку под пивную кружку, две бедренные кости, несколько костей рук (больше, чем нужно одному человеку), а также фрагменты лопаток и ребер; все это они отнесли местному антропологу.
Останки человека, не относящегося к виду Homo sapiens, были обнаружены не впервые (кажется, это был третий подобный экземпляр), однако они оказались «типичными»: именно они определили признаки вида, и именно с ними стали сравнивать все следующие находки. Название вида: Homo neanderthalensis, как вы уже поняли, связано с этим типичным образцом. Возможно, у этого человека было имя при жизни, но для нас он стал Неандертальцем 1 (Neanderthal 1). С его формальной идентификацией связано начало развития палеоантропологии – науки о древних людях.
Но это еще не все. Второй революционный переворот Неандерталец 1 совершил еще через 150 лет. Он предоставил ученым свою ДНК. В холодной пещере его останки в какой-то степени были защищены от хищных животных и всепожирающих бактерий, которые в других условиях уничтожили бы все следы его существования. В этом необычном убежище кости оставались нетронутыми на протяжении сорока тысяч лет. В результате в 1997 году Неандерталец 1 стал первым членом закрытого клуба людей, не относящихся к виду Homo sapiens. Внутри медленно разрушающихся клеток его руки, которой он, возможно, метал копье, были обнаружены молекулы наследственности, несущие свое послание из прошлого в будущее.
В рамках проекта «Геном человека» был исследован геном не только современных людей. Возможно, вам это покажется странным, но изначально в задачи проекта было заложено изучение шести видов существ. Геном раскрывает гораздо больше информации, если его сравнить с другим геномом, в том числе, с геномом организма другого вида. По этой причине в «геномный клуб», кроме нас, вошли следующие существа: любимые модельные организмы ученых – фруктовая муха Drosophila melanogaster, крыса и мышь; затем наши ближайшие родственники шимпанзе; затем медоносная пчела (по той причине, что она является социальным животным; кроме того, большинство членов пчелиной семьи вообще не участвуют в производстве потомства, а только служат королеве, с которой разделяют ровно половину своей ДНК). Геномы этих существ уже были прочитаны и расшифрованы в конце XX века.
В 1997 году, используя такую же технологию, как для анализа ДНК живых людей, работавший в Лейпциге шведский ученый фактически заложил основы нового революционного научного направления – палеогенетики. Сванте Паабо извлек из музея в Бонне правую плечевую кость Неандертальца 1. С невероятными предосторожностями вырезал из середины кости фрагмент длиной 2,5 см, обнажив то, что когда-то было живым костным мозгом, в котором зарождались кровяные и иммунные клетки. В костном мозге возникает множество разных клеток, которые чрезвычайно быстро делятся и, следовательно, быстро воспроизводят свой генетический материал. Здесь и был найден первый клад – ДНК неандертальцев.
ДНК всех живых существ универсальна. Но она организована разными способами – как язык организован в виде книг, глав, памфлетов или даже оригами. И по наследству она передается тоже по-разному. У животных ДНК существует в виде хромосом – гигантских фрагментов двойной спирали, закрученных вокруг самих себя и вокруг маленьких бугристых белков; весь этот комплекс свернут таким образом, что образует знакомую нам по учебникам X-образную структуру. Большинство наших клеток содержат двойной набор хромосом: один унаследован от отца, другой от матери. Эти 23 пары хромосом бережно упакованы в ядре – маленьком гнездышке в центре клетки.
Однако биология – наука, состоящая из исключений и бесконечных ограничений, так что и в данном случае следует учесть, что идентичны хромосомы только в 22 парах (их называют аутосомами), а одна пара – непарная. Непарные хромосомы – это половые хромосомы. У меня одна Y- и одна X-хромосома, а у женщин пару составляют две X-хромосомы. Женщины получают по одной X-хромосоме от каждого из родителей, а мужчины получают Y-хромосому от отца. Однако, хотя Y-хромосома важна для определения пола, по сравнению с другими хромосомами она бедна информацией и содержит лишь незначительную часть суммарной ДНК. А вот X-хромосома – вторая крупнейшая хромосома из всего человеческого набора хромосом.
Есть еще одно исключение, касающееся передачи ДНК от родителей детям. Аутосомы и половые хромосомы никогда не покидают ядра. Однако существуют микроскопические, но невероятно важные молекулы ДНК, которые содержатся не в ядре, а в митохондриях – крохотных энергетических центрах, от которых зависят все сложные формы жизни. Эти клеточные органеллы образовались примерно два миллиарда лет назад в процессе слияния двух одноклеточных организмов. Образовавшиеся новые клетки, эукариоты, стали новой ветвью жизни, которая отличалась от всех существовавших ранее одноклеточных организмов, а именно, бактерий и архей. Три группы организмов (эукариоты, бактерии и археи) называют доменами – это верхняя ступень в иерархии живых существ, расположенная выше ступени пяти царств. К эукариотам фактически относятся все организмы, не относящиеся к бактериям или археям. Именно в эукариотах и содержатся крохотные клеточные электростанции, митохондрии, а в них хранится небольшое количество очень важной ДНК. Если слабенькая Y-хромосома передается от отца к сыну, митохондриальная ДНК (мтДНК) передается детям только от матери. Сперматозоиды содержат лишь половину генетической информации, необходимой для создания нового организма: 22 хромосомы, а также X- или Y-хромосому (что определяет пол будущего ребенка). Яйцеклетки тоже содержат лишь половинный набор информации: 22 хромосомы и X-хромосому, а также материнскую мтДНК.
Почти вся человеческая ДНК (более 97 %) содержится в 22 парных хромосомах и X-хромосоме, и вся эта информация наследуется от обоих родителей примерно в равной пропорции. Каждая аутосома представляет собой уникальную комбинацию ДНК, унаследованную вашими родителями от их родителей. Когда в семенниках мужчины и в яичниках женщины[12] образуются сперматозоиды и яйцеклетки, происходит выравнивание парных хромосом и их перестройка. Представьте, что в лежащих рядом наборах червовых и трефовых карт вы меняете местами несколько карт одинакового достоинства. В результате у вас сохраняется два полных набора карт в правильном порядке, только они представляют собой смесь червей и треф. То же самое происходит с хромосомами при образовании половых клеток. Только хромосомы обмениваются не королями и тузами, а миллионами фрагментов ДНК. Таким образом, каждая из 22 аутосом представляет собой новую комбинацию генов. Этот процесс, называемый рекомбинацией, объясняет генетическую уникальность каждого человека.
Однако с митохондриями и Y-хромосомой ничего подобного не происходит. Митохондриальная ДНК достается человеку от матери, ей – от ее матери и т. д. по материнской линии, а Y-хромосома точно так же передается по отцовской линии. Для тех, кто хочет выяснить свое происхождение, эта ДНК предоставляется удобным инструментом и используется во множестве экспериментов (не в последнюю очередь по причине ее малого размера), так что именно на анализе этой ДНК были основаны первые исследования в генеалогии. Митохондрий в клетке миллионы и поэтому весьма высока вероятность сохранения этой ДНК на протяжении длительного времени. Аутосомы и половые хромосомы существуют в виде единого набора только внутри клеточного ядра. Поэтому по сравнению с ядерной ДНК миллионы идентичных копий митохондриальной ДНК представляют собой гораздо более надежный источник информации. В нашем рассказе мы часто будем упоминать как мтДНК, так и Y-хромосому, впрочем, не только по той причине, что они несут в себе полезную информацию, но и поскольку порой их роль в поиске предков сильно преувеличивают.
Неандертальцы жили почти на всей территории Западной Европы (от восточного края Испании до пещер Уэльса), в горах Центральной Азии и дальше к югу, вплоть до территории Израиля. Возраст самых старых костей неандертальцев, которые мы достоверно идентифицировали, составляет 300 тысяч лет, и нет костей, которые были бы моложе 30 тысяч лет. Это довольно длительный период для существования человеческого вида. Еще более ранний вид, Homo erectus, расселился по всему миру после выхода из Африки, который начался 1,9 миллиона лет назад. Но недавно выяснилось, что неандертальцы оставили в истории более долгий след, чем мы предполагали раньше. Считается, что анатомически современный человек появился в Восточной Африке примерно 200 тысяч лет назад, а потом, в свою очередь, покинул пределы африканского континента (примерно 100 тысяч лет назад).
Эти цифры уточняются каждые пять лет по мере обнаружения новых образцов. В октябре 2015 года в пещере Фуян в провинции Даосянь на юге Китая нашли 47 зубов современного человека; возраст зубов составляет не менее 80 тысяч лет, и логично предположить, что их обладатели проделали путь от того места, где появились (Восточная Африка), до пещеры в Китае как минимум за несколько десятков тысячелетий.
В соответствии с представлениями традиционной палеоантропологии, основанной на изучении костей, к тому времени, когда Homo sapiens пришли в Европу (около 60 тысяч лет назад), неандертальцы уже прекрасно здесь обжились, хотя жили небольшими группами. Но если учитывать результаты анализа ДНК, эту гипотезу следует подвергнуть серьезной ревизии (мы поговорим об этом ниже).
Тем не менее изучение анатомии неандертальцев показывает, что они, совершенно определенно, отличались от других людей. Одним из важнейших параметров в палеоантропологии является размер мозга – так вот у неандертальцев он был больше, чем у нас. Объем мозга современного мужчины составляет около 1,4 литра, у женщин – чуть меньше. Объем мозга неандертальцев составлял от 1,2 до 1,7 литра. Объем мозга нельзя напрямую связать с уровнем интеллектуальных способностей, однако в целом у человекообразных обезьян больший объем мозга соответствует более сложной организации.
Неандертальцы были ниже нас ростом, коренастыми, с выпуклой грудной клеткой, широким носом и тяжелыми надбровными дугами. Очевидно, именно из-за этих физических признаков они приобрели у нас неважную репутацию. В нашем понимании они олицетворяют неотесанных пещерных людей, и порой «неандертальцами» называют тупоголовых бандитов. Когда в XIX веке впервые осуществлялась классификация древних людей, великий немецкий биолог Эрнст Геккель предложил назвать один вид Homo stupidus (Человек глупый).