Расстроенная психика. Что рассказывает о нас необычный мозг - Кандель Эрик Ричард 3 стр.


Рис. 1.5. Частота и продолжительность потенциалов действия определяют силу химической сигнализации нейрона.

Продолжил Эдгар Эдриан тем, что записал потенциалы действия нейронов в глазах, коже, языке и ушах и проверил, есть ли между ними разница. Оказалось, что все сигналы похожи – вне зависимости от того, откуда они исходят и какую сенсорную информацию передают. А вот чем отличается зрение от осязания или вкус от слуха, так это тем, что их сигналы бегут по разным нейронным путям к разным местам назначения. Иными словами, каждый тип сенсорной информации передается по собственному нейронному пути в соответствующую область мозга.

Но как потенциал действия одного нейрона возбуждает потенциал действия следующего нейрона в цепочке? Два молодых британских ученых, Генри Дейл и Вильгельм Фельдберг, заметили, что, когда потенциал действия достигает конца аксона передающей, или пресинаптической, клетки, происходит нечто удивительное: клетка выплескивает в синаптическую щель химические вещества. Эти вещества, позже названные нейромедиаторами, пересекают синаптическую щель и попадают на рецепторы дендритов принимающей, или постсинаптической, клетки. Каждый нейрон передает информацию, устанавливая тысячи синаптических связей со своими клетками-мишенями, и сам получает информацию через тысячи контактов с другими нейронами. Принимающий нейрон суммирует все полученные сигналы и, если они достаточно сильны, преобразует их в новый потенциал действия, новый электрический сигнал из разряда “всё или ничего” и передает его всем клеткам-мишеням, с которыми установил контакт. Далее процесс повторяется. Таким образом нейроны почти мгновенно передают информацию другим нервным и мышечным клеткам, причем даже на большие расстояния.

Сам по себе этот простой вычислительный процесс не слишком впечатляет, однако когда сотни тысяч нейронов передают сигналы по нейронным сетям из одной области мозга в другую, рождаются восприятие, движение, мышление и эмоции. Вычислительная природа мозга снабжает нас одновременно и “дорожной картой”, и логикой анализа болезней мозга. Иными словами, изучая дефекты нейронных сетей, мы можем нащупать разгадки тайн мозга – разобраться, как электрические сети генерируют восприятие, память и сознание. Соответственно, болезни мозга дают нам возможность увидеть, как мозговые процессы формируют психику и как это вычислительное чудо порождает большинство наших переживаний и элементов поведения.

Разрыв между психиатрией и неврологией

Несмотря на многочисленные успехи науки о мозге в XIX веке – успехи, которые заложили основу современной неврологии, – психиатры и исследователи зависимостей не уделяли должного внимания анатомии мозга. Почему?

Психические и аддиктивные расстройства[9] очень долго считались принципиально отличными от неврологических. Если патологоанатомы при вскрытии изучали мозг пациента и находили очевидные повреждения – например, вызванные инсультом, травмой головы, сифилисом и другими инфекциями мозга, – они относили расстройство к биологическим, или неврологическим. Если же они не видели явных анатомических повреждений, то признавали расстройство функциональным, или психическим.

Патологоанатомов поражало, что большинство психических расстройств – шизофрения, депрессия, биполярное расстройство и тревожные состояния – не оставляют скоплений отмерших клеток или прорех в мозге. Раз очевидных повреждений не было, врачи полагали, что эти расстройства либо экстракорпоральны (поражают “душу”, а не тело), либо по выраженности не достигают порога обнаружения.

Поскольку психические и аддиктивные расстройства не повреждали мозг явно, их считали поведенческими, а следовательно, поддающимися контролю со стороны пациента – именно против этих моралистических, немедицинских представлений выступал Пинель. Подобные воззрения привели психиатров к заключению, что социальные и функциональные детерминанты психических расстройств действуют на иной “уровень психики”, нежели биологические детерминанты неврологических расстройств. То же самое касалось и отклонений от господствовавших тогда норм гетеросексуального влечения, поведения и выражения чувств.

Многие ученые считали мозг и психику сущностями раздельными, поэтому психиатры и исследователи зависимостей даже не пытались установить связь эмоциональных и поведенческих трудностей своих пациентов с дисфункцией или нетипичным строением нейронных сетей их мозга. Из-за этого психиатры десятки лет не могли понять, как изучение электрических цепей поможет им разобраться в хитросплетениях человеческого поведения и сознания. Даже в 1990 году делить психические расстройства на органические и функциональные было вполне обычным делом, а некоторые используют эту устаревшую терминологию по сей день. Распрощаться с декартовским дуализмом души и тела оказалось очень сложно, поскольку эта концепция отражает наше восприятие самих себя.

Современные подходы к болезням мозга

В конце XX века сформировалась новая биология психики, основанная на предположении, что именно мозг опосредует все психические процессы человека – от бессознательных процессов, управляющих нашими движениями, когда мы бьем по мячу для гольфа, до сложных творческих процессов, обеспечивающих сочинение концерта для фортепиано, и социальных процессов, позволяющих нам взаимодействовать друг с другом. Теперь психиатры считают нашу психику совокупностью функций, выполняемых мозгом, а все психические и аддиктивные расстройства признают болезнями мозга.

Современные представления основаны на трех научных прорывах. Первым стало появление генетики психических и аддиктивных расстройств, связанное с именем немецкого психиатра Франца Каллманна, который в 1936 году эмигрировал из Германии в США и впоследствии работал в Колумбийском университете. Каллманн задокументировал роль наследственности в таких психических болезнях, как шизофрения и биполярное расстройство, показав тем самым их биологическую природу.

Второй прорыв – разработка методов нейровизуализации, показавших, что разные психические расстройства поражают разные системы мозга. Теперь, например, можно выявлять, какие области мозга работают некорректно у людей, страдающих депрессией. Кроме того, визуализация позволила наблюдать за действием лекарств на мозг и даже фиксировать изменения от лечения медицинскими препаратами или психотерапией.

И наконец, третий прорыв – разработка способов моделирования болезней на животных. Ученые создают животные модели, манипулируя генами животных и наблюдая за производимым эффектом. Животные модели просто бесценны для изучения психических расстройств, поскольку дают понять, как гены, окружающая среда и комбинация этих факторов могут нарушать развитие мозга, обучение и поведение. Эти модели, например мыши, особенно полезны для исследования выученных страхов[10] и тревожности, поскольку эти состояния встречаются у животных и в естественных условиях. Но мыши пригодны и для изучения депрессии или шизофрении, если помещать в их мозг измененные гены, участвующие в развитии этих заболеваний у людей.

Давайте сначала рассмотрим генетику психических расстройств, затем перейдем к визуализации мозговых функций, а уж потом – к животным моделям.

Генетика

Каким бы поразительным ни казался мозг, он все равно остается органом тела: как и все биологические структуры, он формируется и регулируется генами. Гены – отдельные отрезки ДНК, обладающие двумя удивительными характеристиками: они обеспечивают клетки инструкциями по созданию нового организма с нуля и передаются от поколения к поколению, перенося тем самым эти инструкции потомству организма. Каждый из генов предоставляет свою копию почти каждой клетке тела, а также будущим поколениям.

У каждого из нас примерно 21 тысяча генов, и около половины из них экспрессируется в мозге. Говоря, что ген “экспрессируется”, мы имеем в виду, что он активен и руководит синтезом белков. Каждый ген кодирует конкретный белок, то есть содержит инструкции по его синтезу. Белки определяют строение, функции и другие биологические характеристики каждой клетки нашего тела.

Как правило, гены реплицируются[11] без проблем, однако случаются сбои, и тогда возникают мутации. Мутация гена случайно может оказаться полезной для организма, но может привести и к перепроизводству, потере или некорректной работе белка, который кодируется измененным геном, а это ставит под угрозу структуру и функции клетки и даже здоровье организма.

Каждый ген человека представлен в двух копиях: одна досталась ему от матери, другая – от отца. Эти пары генов располагаются в четком порядке на 23 парах хромосом[12], благодаря чему ученые могут идентифицировать каждый ген по его локусу – положению на конкретной хромосоме.

Материнскую и отцовскую копии каждого гена называют аллелями. Два аллеля одного гена обычно незначительно отличаются друг от друга: каждый из них представлен определенной последовательностью нуклеотидов – четырех молекул, из которых составляется код ДНК. Так, последовательность нуклеотидов в генах, которые вы унаследовали от матери, не обязательно полностью совпадает с последовательностью нуклеотидов в генах, унаследованных от отца. Более того, унаследованные вами нуклеотидные последовательности – это не идеальные копии родительских последовательностей: при копировании генов в ходе их передачи потомству возникают случайные различия. А они ведут к вариациям во внешнем виде и поведении.

Несмотря на множество вариаций, которые дают нам ощущение индивидуальности, генетическая составляющая, или гено́м, двух любых людей совпадает более чем на 99 %. Различия между людьми обусловлены случайной вариабельностью одного или нескольких генов, которые они наследуют от родителей (хотя бывают и редкие исключения, о которых мы поговорим в главе 2).

Если почти каждая клетка нашего тела содержит инструкции для всех остальных, то как одна клетка становится клеткой почки, а другая – клеткой сердца? Или, если говорить о мозге, как одна клетка становится нейроном гиппокампа, вовлеченным в процессы памяти, а другая – мотонейроном спинного мозга, участвующим в контроле движения? В каждом из примеров в клетке-предшественнице активируется определенный набор генов, запускающий механизмы, которые наделяют эту клетку особой судьбой. Какой именно набор генов активируется, зависит от молекулярных взаимодействий внутри клетки и взаимодействий клетки с соседними клетками и внешней средой организма. Число наших генов конечно, но возможность включения и выключения разных генов в разное время становится источником практически бесконечной сложности.

Чтобы полностью разобраться в болезни мозга, ученые пытаются определить, какие гены лежат в ее основе, а затем понять, как их вариабельность в совокупности с факторами окружающей среды вызывает болезнь. Получив базовые сведения о том, что пошло не так, мы можем найти способы вовремя вмешаться, чтобы предотвратить болезнь или смягчить ее течение.

Генетические исследования семей, начатые в 1940-х годах Каллманном, показывают, насколько широко влияние генетики на психические заболевания (табл. 1). Мы даже скорее говорим о генетических “влияниях”, поскольку наследование психических расстройств – событие сложное: нет единственного гена, который вызывал бы шизофрению или биполярное расстройство. Каллманн обнаружил, что шизофреники имеют родителя или сиблинга[13] с таким же диагнозом намного чаще, чем люди без шизофрении. Более того, он установил, что по сравнению с разнояйцевым однояйцевый близнец человека, страдающего шизофренией или биполярным расстройством, с гораздо большей вероятностью заболевает тем же. Поскольку гены однояйцевых близнецов одинаковы, а разнояйцевых – совпадают лишь наполовину, эта находка четко показала, что гены однояйцевых близнецов в большей степени, чем их общая среда, ответственны за развитие этих психических расстройств.

Исследования близнецов выявили мощную генетическую составляющую и у аутизма: если один из однояйцевых близнецов страдает этим расстройством, в 90 % случаев оно проявляется и у второго. У разнояйцевого близнеца или другого сиблинга из той же семьи шансы на развитие аутизма гораздо ниже, а у индивида из общей популяции и вовсе мизерны (табл. 1).

Мы многое узнали о роли генов в медицинских расстройствах, изучая семейные истории. Полученные данные позволили разделить генетические заболевания на две группы: простые и сложные (рис. 1.6).

Табл. 1. Частота возникновения аутизма и психических расстройств у однояйцевых близнецов и прочих сиблингов пациента с тем же диагнозом.

Простое генетическое заболевание, например болезнь Хантингтона, вызывается мутацией одного гена. У человека с такой мутацией разовьется болезнь, и то же самое касается его однояйцевого близнеца. Предрасположенность к сложным заболеваниям вроде биполярного расстройства и депрессии, напротив, обусловлена взаимодействием нескольких генов друг с другом и окружающей средой. Мы можем сказать, что биполярное расстройство – это сложная болезнь, поскольку знаем, что она далеко не всегда поражает двух однояйцевых близнецов. Это значит, что ключевую роль в ее развитии играют средовые факторы. Когда в развитии болезни задействованы и гены, и среда, обычно проще первым делом найти гены-кандидаты – в ходе масштабных исследований установить, какие гены соотносятся, например, с депрессией, а какие с манией, – а уж потом разбираться со вкладом окружающей среды.

Рис. 1.6. Простое генетическое заболевание обусловлено мутацией одного гена (А), а сложное – изменениями нескольких генов в совокупности с факторами внешней среды (Б).

Нейровизуализация

До 1970-х клиницисты располагали сильно ограниченным набором инструментов для изучения живого мозга: рентген показывал им костную структуру черепа, но не сам мозг, ангиография отображала кровоснабжение мозга, а пневмоэнцефалография демонстрировала желудочки мозга – заполненные спинномозговой жидкостью полости. Вооруженные этими грубыми радиологическими методами вкупе с аутопсией[14], исследователи мозга годами изучали страдающих депрессией и шизофренией, но не находили у них никаких повреждений мозга. В 1970-х наконец начали развиваться две группы методов нейровизуализации – структурной и функциональной, – которые революционно расширили наши представления о мозге.

Структурная нейровизуализация отображает анатомию мозга. Компьютерная томография (КТ) совмещает серии рентгеновских снимков, сделанных под разными углами, в послойное изображение мозга. Такие сканы позволяют различать плотность разных структур мозга: пучков аксонов, из которых состоит белое вещество, а также тел и дендритов нейронов, из которых состоит серое вещество – кора головного мозга.

Магнитно-резонансная томография (МРТ) использует совершенно другой принцип: она различает структуру по реакции разных тканей на магнитное поле, в котором они оказываются. Полученные изображения дают более детальную информацию, чем компьютерные томограммы. Например, МРТ помогла установить, что у страдающих шизофренией увеличены боковые желудочки мозга, тоньше кора и меньше гиппокамп.

Назад Дальше