Самое потрясающее, что наш мозг потребляет на эти процессы не более 13 ватт/час. Ни один компьютер в мире пока не может сравниться с вычислительными способностями человеческого мозга («вычисления» в данном контексте обеспечивают функционирование зрения, слуха, воображения), с его потрясающей энергетической эффективностью. И это только начало.
Почти все клетки человеческого организма находятся в процессе непрерывного рождения, развития, умирания. Все, кроме нервных, – они сопровождают человека всю его жизнь, от рождения до смерти [см. «К концу жизни», стр. 230]. Именно они делают человека человеком. Индивидуальность, способности и таланты, знания и словарный запас, наклонности и вкусы, даже воспоминания о прошлом записаны в личной нейронной карте [см. «Личность», стр. 166]. В мире нет двух людей с одинаковым мозгом, даже мозги близнецов не идентичны.
Поразительно, но это устройство способно, в определенных пределах, починить самое себя. Когда какой-либо его участок оказывается поврежденным в результате несчастного случая, мозг способен перепрограммироваться, перенести самостоятельно функции из раненых областей в здоровые [см. «Зрение», стр. 121]. Иногда перераспределение деятельности может затронуть весьма обширные области мозга (например, в случае утраты зрения области, ответственные за визуальные способности, перераспределяются между другими чувствами), но обычно оно затрагивает небольшие участки, поскольку многие нейроны в течение нашей жизни умирают и не восстанавливаются. При этом живые нервные клетки прекрасно знают, как им нужно реорганизоваться, чтобы последствия гибели нервной ткани не сказались на человеческом существовании фатальным образом [см. «Развитие способностей мозга», стр. 243]. В обычном процессоре поломка транзистора на одной из кремниевых плат может привести к прекращению работы компьютера. В мозге же в случае отказа одного из синапсов, ответственного за обеспечение 150 тысяч миллиардов связей между нейронами, сигнал тревоги не успевает включиться – процессы переключаются спонтанно.
Влияние одного-единственного нейрона на сотни связанных с ним клеток нервной ткани может быть и сильным, и очень слабым, в зависимости от прочности и устойчивости синапса. Согласно правилу, сформулированному канадским ученым Дональдом Хеббом в 1949 году, «Neurons that fire together, wire together» («Нейроны, которые вместе возбуждаются, соединяются вместе»). Нейроны, через которые нервный импульс проходит одновременно, соединяются и усиливают друг друга.
Благодаря этой способности мозг может постепенно преобразовывать отдельные участки: создавать новые синапсы, усиливать способности действующих, удалять нефункционирующие [см. «Первые шаги», стр. 97]. Значительное количество мозговых функций – например, способность к обучению – зависит от постоянного обновления синаптических соединений, от их мощности и устойчивости. В конечном счете, опровергая научные взгляды прошлого, можно утверждать, что к человеческому мозгу неприменимы понятия неизменности и постоянства:
• Мозг постоянно находится в состоянии самосохранения.
• Ребенок, считавшийся «безнадежным двоечником», может внезапно «научиться учиться»; надо просто поощрять его, а не убивать на корню любую инициативу [см. «Обучение», стр. 179].
• С любой вредной привычкой, сколь бы застарелой и милой сердцу она ни была, можно расстаться. Даже сильные зависимости, такие как игромания, могут быть поставлены под контроль и подчинены воле человека [см. «Привычки и зависимости», стр. 212].
• Старушка может сохранить память молодой женщины, если не прекратит учиться и напрягать умственные способности [см. «Учиться, учиться и еще раз учиться», стр. 235].
• А вот длительный стресс, даже если он не приводит к посттравматическому синдрому, вызывает необратимые изменения в мозгу, причем в долгосрочной перспективе [см. «Хронический стресс», стр. 216].
Внимание: эта книга является научно-популярной [см. «Правовая информация», стр. 268]. В случаях мозговых патологий или серьезных нарушений нервной деятельности следует обращаться к специалистам, которые могут оказать необходимую помощь и провести соответствующее лечение [см. «Неполадки», стр. 220].
Если продолжать аналогии с компьютером, люди являются «пользователями» мозга, но «пользователями» привилегированными – с помощью желания, то есть некоего волеизъявления, мы способны изменять, наращивать, настраивать, пусть частично, нашу собственную синаптическую систему [см. «Панель управления», стр. 170]. Нечто, сказанное мимоходом, может изменить жизнь.
Люди ждут контактов с внеземной цивилизацией, воображают инопланетян, превосходящих нас интеллектуально, и при этом имеют под рукой мозг Homo sapiens, по-прежнему остающийся самой необыкновенной, поразительной и фантастической вещью на свете. Он настолько сложно и хитроумно устроен, что его нейроны способны производить мысли и хранить воспоминания. И он абсолютно индивидуален – создан для каждого пользователя персонально. Глубокое изумление охватывает исследователя, внезапно понимающего, что нет в мире ничего, что могло бы сравниться с этим биологическим устройством, способным с невероятной эффективностью производить сложнейшие расчеты. Попробуем же заглянуть в этот удивительный орган.
1.1. Технические характеристики
1.2. Версия операционной системы
Современной версии «операционной системы», которая работает в мозге человека, можно, по аналогии с компьютером, присвоить номер 4.3.7 (G-3125)[2]. Ее можно квалифицировать как нервную систему, последовательно эволюционировавшую в течение миллионов лет посредством генетических мутаций и предназначенную для идеального функционирования человеческой особи на данной планете.
О новых версиях системы (в настоящий момент недоступны) можно получить информацию в разделе «Версия будущего» [см. стр. 252].
2. Из чего состоит мозг
С точки зрения врача-анатома, мозг представляет собой единое целое. Однако это не так. Строение мозга часто упрощают, представляя его чем-то вроде нейронной сети, но он далеко не однороден. Ближе к истине представление о мозге как о сложной сети, состоящей из нескольких подсетей, каждая из которых включает в себя собственные подсети.
Даже одна-единственная клетка мозговой ткани [см. «Нейроны», стр. 26] представляет собой важное звено цепи, управляемое инструкциями, закодированными в генах. Клетка, в свою очередь, отвечает за действие миллионов ионных каналов, натриево-калиевых насосов и других химико-биологических образований, которые определяют электрический потенциал клеточной мембраны, то есть разницу напряжения внутри и снаружи клетки. Однако клетка сама по себе ничего не значит в работе мозга, вычислительный процесс возможен только во время соединения нейрона с другими нейронами. Информация на самом деле хранится не в клетках головного мозга, она остается в соединениях между клетками – в так называемых синапсах [см. стр. 33].
Рядовой нейрон имеет несколько тысяч связей с многочисленными постсинаптическими нейронами, расположенными рядом. Соседствующие нейроны организуются в функциональные группы, так называемые ансамбли. Например, только в одном лишь гипоталамусе [см. стр. 65], имеющем размер чуть больше миндального ореха, их не менее пятнадцати, и каждый ансамбль выполняет свою функцию. Нейроны могут подключаться также к цепям, формирующим церебральные каналы, которые отвечают за особые функции мозга – например, такие, как сон или концентрация внимания. Нейронные цепочки тоже могут объединяться, чтобы усилить разрозненные действия, – и мы получаем на выходе способность к связной речи или чувство эмпатии. Мозг, таким образом, представляет собой монументальную сеть, способную производить такие таинственные вещи, как сознание и мышление [см. стр. 90].
Система связей в мозге не была бы столь потрясающе эффективной, если бы все ее процессы не дублировались параллельной сетью, которая тесно перепутана с нейронной, по сути, обвивая ее, как лоза: эта сеть сформирована глиальными клетками [см. стр. 46], они снабжают нейроны питанием, кислородом, выводят отходы жизнедеятельности. Вдобавок глиальные клетки обеспечивают невероятную скорость, с которой действуют аксоны – клеточные отростки, служащие путями передачи импульсов на далекие расстояния [см. стр. 32]. Аксоны покрыты слоем беловатой жировой ткани, называемым миелином. Несколько упрощая, можно сказать, что она усиливает сигнал [см. стр. 50]. Кора головного мозга, которая в отличие от остальной мозговой ткани состоит из шести слоев, подчиняющихся строгой иерархии, обязана эффективностью именно высокой скорости, с которой нервные импульсы проходят большие расстояния.
Поразительно, общая длина волокон миелина человеческого мозга (включая и волокна, что соединяют между собой полушария, формируя так называемое мозолистое тело) оценивается в примерно 150 тысяч километров. Это равно четырем окружностям земного экватора!
Следует отметить, что эта чудовищно сложная сеть играет важную роль и в функционировании обоих полушарий головного мозга (правое и левое полушария отвечают за противоположные части тела), и в работе различных мозговых долей и областей коры (отвечающих за процесс мышления и исполнительные функции), и в деятельности всех других составных частей церебрального аппарата, каждая из которых обладает строго определенным количеством нейронов определенного назначения. Каждый из нейронов находится на строго определенном месте в иерархии, в соответствии с предписанными ему функциями. Говоря другими словами, мозговая нейронная сеть состоит из многочисленных подсетей. Древние пирамиды Гизы, «Джоконда», «Реквием» Моцарта, открытие гравитации или эволюции – примеры чудес, которые могут создавать нейроны, составляющие суперсеть в человеческом мозге.
2.1. Нейроны
По ряду оценок, тело человека среднего роста и веса состоит из 37 тысяч миллиардов клеток. Независимо от того, хрупкая ли это старушка или крепкий молодой парень, на их создание пошло весьма внушительное количество биологических кирпичиков.
Однако во всех частях этой сложной конструкции из клеток костей и крови, печени и кожи наличествуют непременно клетки особой группы, распределенной по всему телу, – нейроны. Кирпичики, составляющие нервную ткань, обладают удивительными свойствами. Они могут испытывать электрическое возбуждение и, включаясь в сеть, состоящую из бесконечного количества миллиардов соединений, передают электрические импульсы и химические реакции на сотни километров в течение миллисекунды.
Считается, что в мозге примерно 86 миллиардов нейронов[3], которые сопровождают человека от рождения до смерти, в отличие от других клеток. Большинство нейронов живут долгую жизнь вместе со своим хозяином [см. стр. 230]. Передача информации в виде электрохимических реакций по чрезвычайно запутанной сети клеток мозга позволяет читать и понимать этот текст в данную минуту. Эта же сеть создает в нашей голове память, порождает различные идеи, позволяет выразить эмоции и отвечает за множество разных проявлений человеческой личности.
Центральная часть нейрона, его тело, которое называется сома, имеет бесконечно крошечные размеры (самый маленький в диаметре имеет 4 микрона, то есть 4 миллионных части метра), но при этом клетка может растягиваться на несколько сантиметров, ее отростки превышают размер ядра в десятки тысяч раз. Эти отростки, протягивающиеся на огромные, по сравнению с размерами ядра, расстояния, именуются аксонами. Каждый нейрон имеет только один аксон, и по аксону, как по проводу, информация передается вовне нейрона, к другим нейронам. От другого нейрона к аксону тянется другой отросток, более короткий, дендрит: у каждого нейрона таких дендритов много, они имеют разветвления и, как антенны-приемники, считывают информацию и направляют ее внутрь клетки.
Нейроны могут принимать самые различные формы, каковых насчитывается более двухсот видов, но основная разница между типами нейронов состоит в роли, которую они играют в церебральной сети. Сенсорные нейроны (они называются также афферентными, то есть «передающими в центр») получают сигналы от различных органов, таких как глаза, или поверхностных тканей, например кожи, и передают их в центральную нервную систему.
Двигательные нейроны (еще их называют эфферентными, что означает «те, что проводят сигнал») передают приказы от нервной системы к различным периферийным органам, вплоть до пальцев ног, по позвоночному столбу. Интернейроны, то есть все остальные, осуществляют чудо мышления посредством невероятно сложной системы сети внутренних связей. В мозге Homo sapiens количество синапсов, ответственных за прохождение сигналов, превышает любое воображение. Синапс представляет собой терминаль-трансмиттер (передатчик), соединенный с терминалем-реципиентом (приемником) через бесконечно крошечное внеклеточное пространство, именуемое синаптической щелью.
Нейроны общаются между собой посредством молекулярных цепочек, нейротрансмиттеров [см. стр. 36], которые приходят в движение по команде клетки. Команда на потенциальные действия приходит в виде изменений электрического напряжения, за тысячные доли секунды высвобождающих молекулы веществ-нейротрансмиттеров (например, дофамина, серотонина или норадреналина) и направляющих их к клетке-приемнику. Таким образом, когда нейрон меняет свой электрический потенциал, он посылает сообщение соседнему нейрону. Это сообщение либо приводит последний в возбуждение, в свою очередь, либо, наоборот, успокаивает и создает «режим тишины».
На эту систему передачи информации, уже достаточно сложную, накладываются нейронные колебания, или нейронные осцилляции, более известные как мозговые ритмы.
Эти колебания имеют регулярный характер и разную частоту (измеряемую в герцах, то есть в количестве колебаний в секунду) и возникают в разных областях мозга, в зависимости от его активности, то есть в границах от глубокого сна до крайнего возбуждения. Эти осцилляции были открыты в 90-х годах прошлого века благодаря появлению такого прибора, как энцефалограф.
Передача информации по нейронной сети дублируется параллельной системой контроля прохождения сигнала. Параллельная система работает как цифровая (сигнал может быть только двух видов – «вкл» или «выкл», то есть «да» или «нет»), не использует аксоны для передачи сигнала на далекое расстояние и действует в основном между соседними нейронами, эти самые да/нет передаются от сомы к соме. В этой системе задействованы только нервные узлы или группы специализированных нейронов. Таким образом, получается, что на пути прохождения нервного сигнала нейроны соединяются через синапсы не только посредством химических реакций, но и через электрические импульсы.
Мозг похож на парк, в котором играют многочисленные оркестры, но вот беда – каждый свою мелодию, и поэтому эти оркестры надо как-то синхронизировать. Параллельная электрическая система и служит как раз синхронизатором для многочисленных оркестров, состоящих из музыкантов-нейронов. Эти синхронизирующие импульсы и образуют мозговые ритмы.
Вначале, после открытия этого феномена, ритмы исследовали как одно из свойств механизма сна [см. стр. 105]. Сегодня ученые уже знают, что мозговые ритмы, или, как их еще называют, церебральные волны, играют ключевую роль в процессе передачи нервных импульсов, при реализации человеком когнитивных функций, формировании поведенческих моделей. Волны не только позволяют синхронизировать или развести во времени концерты, исполняемые разными группами нейронов: они чрезвычайно важны и для других процессов в мозге. Церебральные волны, скорее всего, могли бы многое поведать о загадках сознания [см. стр. 144], но пока ученые еще не собрали достаточного количества фактов об этом явлении.