Такие часы, судя по всему, имеются у каждого живого организма на планете. Бактерии, одноклеточные организмы, растения, мухи, рыбы и киты – у всех есть такие внутренние часы. Для некоторых форм жизни потребность в этих часах очевидна. Но зачем знать, который час, бактериям или растениям? Конечно, последним нужно знать, когда светит солнце, чтобы раскрывать свои листья и запускать процесс фотосинтеза, однако для этого не нужны сложные внутренние часы – достаточно просто научиться чувствовать наличие солнечного света. Да и зачем рыбам, живущим в темноте пещер, лишенным солнечного света на протяжении тысяч поколений, держаться за эти часы? Их наличие указывает на то, что циркадный ритм заложен в самой сущности жизни, что со времен существования последнего «универсального общего предка», от которого произошли все формы жизни на Земле, эволюционное давление и естественный отбор способствовали сохранению внутренних часов.
Вместе с тем очень сложно понять, в чем именно заключалось это эволюционное давление на самом конце известного нам жизненного спектра – у бактерий и водорослей.
Есть предположение, что причина развития циркадных ритмов у бактерий и водорослей может крыться в стремлении избежать деления клеток, подразумевающего копирование генов, в моменты воздействия ультрафиолетового излучения, которое, как известно, провоцирует появление мутаций.
Согласно общепризнанной гипотезе, циркадные ритмы появились в ходе эволюции с целью контроля производства генов, которые противодействуют суточным колебаниям уровня кислорода в воде и повреждениям, вызываемым кислородом. Циркадные ритмы могли появиться во времена так называемой кислородной катастрофы, имевшей место примерно 2,45 миллиарда лет назад. Этот период времени характеризуется эволюцией цианобактерии, или сине-зеленой водоросли, ставшей, как считается, первым микроорганизмом, у которого развился фотосинтез – механизм преобразования углекислого газа в кислород с использованием солнечной энергии. В те времена уровень кислорода в атмосфере был низким, и любой свободный кислород сразу же вступал в химическую реакцию с другими веществами, присоединяясь к их молекулам. Резкий же рост свободного кислорода в атмосфере, вызванный деятельностью цианобактерий, как считается, спровоцировал одно из самых массовых вымираний в истории планеты, убив большинство организмов, для которых этот элемент был крайне токсичным. Выжившим организмам нужно было выработать механизм, который защищал бы их от опасного воздействия свободного кислорода. Считается, что эта потребность в защите привела к эволюции так называемых редокс-белков, которые поглощают токсичные побочные продукты химических реакций с участием кислорода. Теория гласит, что организмы, предсказывая появление солнечного света и понимая, когда уровень кислорода увеличится, могли защищать себя от его токсичного воздействия, вырабатывая эти белки в нужное время дня. Но на самом деле происхождение циркадных ритмов остается загадкой.
Любые часы должны предоставлять возможность настройки или сброса, подобно тому как часовщик возится с маятником напольных старинных часов, чтобы они показывали правильное время. Циркадные ритмы, особенно у более сложных организмов, должны перестраиваться в соответствии со сменой сезонов. За последние несколько десятилетий мы добились значительного прогресса в понимании того, как именно это происходит, и теперь знаем о влиянии внешних факторов, которые сдвигают наши циркадные ритмы в ту или иную сторону. Эти факторы получили название Zeitgebers – «задатчики времени» в переводе с немецкого, или синхронизирующие факторы.
Предоставленный самому себе, наш циркадный ритм настроен на 24,2 часа, и без синхронизирующих факторов наши внутренние часы постепенно убегали бы вперед.
Наши внутренние часы чувствительны к температуре, физической активности и употреблению пищи, однако самым важным синхронизирующим фактором является свет – особенно в синей части спектра, подобный солнечному. Хотя наши циркадные часы, как было доказано, работают независимо от солнца, оно все равно оказывает на них значительное влияние.
Гринвичская королевская обсерватория, расположенная всего в нескольких минутах езды на поезде от Центра расстройств сна в больнице Гая, размещена на вершине холма, с которого открывается вид на большую излучину реки Темзы. С тринадцатого этажа больницы видно, как холм постепенно возвышается в сторону юго-востока Лондона, однако разглядеть здание обсерватории посреди леса уродливых башен 1960-х годов и новеньких современных небоскребов толком не удается. На крыше обсерватории расположена большая металлическая мачта с флюгером на конце, выступающим в привычно серое лондонское небо. На эту мачту нанизан большой красный металлический шар в пару метров в диаметре. Каждый день в 12:55 по Гринвичу зимой и по британскому летнему времени летом этот шар наполовину поднимается, а затем, в 12:58, достигает самой верхушки мачты. Ровно в час пополудни этот шар падает вниз по мачте. В настоящие дни территория вокруг обсерватории застроена небоскребами Канэри-Уорф, главного делового квартала Лондона, которые возвышаются над городом из-за реки. В середине девятнадцатого века, однако, на Темзе в это время собирались многочисленные парусные суда, перевозившие товары по Британской империи.
Сотни телескопов были направлены на сигнальный шар Гринвичской обсерватории в ожидании момента его падения. С помощью него мореплаватели могли выставить хронометры на борту каждого корабля в соответствии со временем по Гринвичу, что было крайне важно для расчета долготы, необходимого для их путешествий в Ост-Индию и за ее пределы.
Подобно хронометрам на борту этих кораблей, в организме человека имеется множество часов, однако эталонные – большой красный шар королевской обсерватории – у людей, да и у остальных позвоночных, расположены в небольшом участке мозга под названием супрахиазматическое ядро. Этот крошечный комочек ткани, состоящий из жалких нескольких тысяч нейронов, находится в гипоталамусе, прямо над перекрестом зрительных нервов, передающих информацию от глаз. Он является центром управления всех циркадных ритмов организма, и разрушение супрахиазматического ядра приводит к потере этой ритмичности.
Внутри нейронов супрахиазматического ядра изо дня в день происходят замысловатые «танцы», в ходе которых гены с такими названиями, как CLOCK и Period, взаимодействуют между собой, обмениваясь информацией и тем самым обеспечивая работу наших внутренних часов. Свет же, будучи синхронизирующим фактором, влияет на этот «танец», замедляя или ускоряя его. В сетчатке, расположенной на задней поверхности глаза, помимо палочек и колбочек, ответственных за преобразование световых волн в зрительный сигнал, расположены ганглиозные клетки сетчатки. Некоторые из них и вовсе не вносят никакого вклада в зрительный процесс. Их единственной задачей является передача сигнала в супрахиазматическое ядро напрямую через так называемый ретиногипоталамический путь. Именно через него солнце оказывает влияние на ритм в супрахиазматическом ядре, воздействуя на его фазу, связь суточного ритма с внешним миром, а также его амплитуду.
У людей, полностью лишенных зрения, могут возникнуть проблемы с управлением циркадными ритмами.
Диагностированный Винсенту педиатром синдром задержки фазы сна – довольно распространенное явление. У пациентов с этим расстройством циркадный ритм отстает от ритма внешнего мира. Если большинству людей хочется спать между десятью часами вечера и полуночью, а просыпаются они между шестью и восемью часами утра, то люди с задержкой фазы сна могут начать засыпать и в три часа ночи, и даже в семь утра, а встают они спустя семь-восемь часов. Если они получают такое количество сна, то чувствуют себя нормально. К сожалению, жизнь часто вмешивается в наш сон, и в рамках ограничений современного общества сохранить работу или получить образование с таким режимом сна сложно, если вообще возможно.
В определенной мере склонность засыпать и просыпаться пораньше либо ложиться спать и вставать позже нормальна. Существует широкий спектр хронотипов – типичного для человека характера его суточной активности. На границах этого спектра расположены так называемые «совы» и «жаворонки». Люди с синдромом задержки фазы сна выходят за границы этого нормального спектра – они такие «совы», циркадный ритм которых отстает настолько, что это оборачивается негативными последствиями для их жизни.
Как и с любыми характеристиками нашего сна, хронотип, судя по всему, в той или иной мере определяется генами. Исследования близнецов и целых семей показали, что почти половину человеческого хронотипа контролирует генетика, и была установлена связь различных вариаций генов, регулирующих наши циркадные ритмы, с экстремальными случаями и среди «жаворонков», и среди «сов». У людей с наследственной формой так называемого «синдрома опережения фазы сна», при котором человек ложится спать рано вечером и встает очень рано утром, была выявлена мутация в одном конкретном циркадном гене, получившем название PER. Более того, оказалось, что мутация в другом циркадном гене под названием DEC2 увеличивает время бодрствования и уменьшает необходимое количество сна.
Для большинства людей, однако, на их режим сна и бодрствования влияют не эти отдельные мутации, а суммарный эффект многочисленных, более умеренных вариаций всех этих генов.
Что еще более интересно, изменение хронотипа происходит по мере взросления мозга. У подростков циркадные ритмы, как правило, смещаются на более позднее время, а затем, когда они взрослеют, меняются обратно. Я вижу, как это происходит у моей старшей дочери. Вытаскивать ее по утрам из кровати становится все более сложно, равно как и укладывать спать не слишком поздно по ночам. Без всякого сомнения, подобное изменение во внутренних часах, наблюдаемое у подростков, усугубляется использованием электронных гаджетов поздно вечером. Когда не отрываешься, лежа в кровати, от планшета, ноутбука или смартфона, как это делают многие подростки, то свет от экрана действует как мощный синхронизирующий фактор, усиливая задержку фазы сна. Это серьезная проблема. Как следствие, многие подростки, которым по-прежнему приходится рано вставать в школу, страдают от недосыпа, а недосып мешает нормальной успеваемости в школе, способствует появлению проблем с поведением и развитию тревоги. Люди с синдромом задержки фазы сна вместе с тем особенно восприимчивы к воздействию света и его влиянию на циркадные ритмы. Вспышка света в вечернее время, как оказывается, у таких людей в значительно большей степени способствует отставанию циркадных часов, чем у остальных.
Итак, решение проблемы Винсента, возможно, заключается в том, чтобы отказаться от использования по вечерам электронных устройств либо носить в вечернее время солнцезащитные очки, чтобы максимально ограничить воздействие света, в особенности голубого, на ганглиозные клетки его сетчатки. У этого решения только одна проблема: у Винсента на самом деле нет синдрома задержки фазы сна. Его проблема куда более редкая.
Если вы внимательно читаете эту историю, то должны были уже это понять, поскольку Винсенту каждую ночь (или день, раз уж на то пошло) хочется спать в разное время.
«По сути, мой режим сна постоянно смещается, так что каждый день мне хочется спать на час позже, чем в предыдущий, – говорит Винсент. – То есть если вчера я лег спать в десять вечера, то сегодня меня будет клонить ко сну в одиннадцать, и так далее».
Этот постоянный «перевод» внутренних часов приводит к тому, что время сна и, как следствие, бодрствования у Винсента каждый день смещается на один час. Таким образом, каждый месяц в течение нескольких дней Винсент живет в одном ритме с окружающим миром, однако вскоре его ритм начинает сдвигаться. «Неделю или около того я попадаю в установленные обществом часы, однако все остальное время мой режим не совпадает с общественным ритмом». В итоге доходит до того, что Винсент начинает вести практически ночной образ жизни – порой ему хочется спать с одиннадцати дня до девяти-десяти вечера.
У таких постоянных сдвигов режима серьезные последствия. Как результат, Винсент частенько страдает от невероятного недосыпа. На протяжении большей части цикла, через который он проходит, Винсенту сложно заснуть в нужное время, однако он заставляет себя просыпаться, чтобы пойти в школу. Порой его будят, когда на его внутренних часах два-три часа ночи, и в четыре-пять часов утра все по тем же внутренним часам ему приходится сидеть на уроках. По сути, он постоянно оказывается в другом часовом поясе.
Винсент говорит: «Когда я в школе, мне порой очень сложно сосредоточиться. Один учитель заметил, что я особенно медленно читаю, и это влияет на мою способность усваивать информацию. Иногда я уже попросту не в состоянии сконцентрироваться, так что засыпаю прямо на уроках».
Во время одной из наших встреч где-то в пять вечера Винсент был в фазе, когда ему хотелось спать в два-три часа дня, а вставать в полночь или час ночи. Мозг Винсента говорил ему, что он должен крепко спать, и на его внутренних часах было один-два часа ночи. Ему было сложно составлять фразы, он постоянно запинался, подыскивая слова, пытался привести мысли в порядок. Это напомнило мне времена моих суточных дежурств, когда я был младшим врачом. Посреди ночи мне приходил вызов на пейджер, и я был вынужден точно так же собираться с мыслями, чтобы дать осмысленное медицинское заключение. Винсент говорит, запинаясь: «Я просто чувствую, что отстаю от всего остального мира. Когда я в одной фазе с окружающим миром, то чувствую себя довольно хорошо, потому что в состоянии быть наилучшей версией самого себя, самой выразительной версией самого себя. Сейчас же у меня явные проблемы с выражением своих мыслей».
То, как Далия описывает его, когда он в нормальной фазе и когда нет, поразительно:
«Если Винсент в режиме, когда ему хочется целый день спать, он сам не свой. Выглядит уставшим, ведет себя заторможенно, ему сложно соображать. Если же он в одной фазе с остальным миром, когда он просыпается в половине седьмого или в семь утра, он собран и ничем не отличается от остальных. Он усердно учится, гораздо больше общается. По сути, он начинает лучше взаимодействовать с миром».
Как и следовало ожидать, учеба Винсента от всего этого сильно страдает. «Каждый день было очень сложно попасть в школу, потому что я постоянно опаздывал, а учителя не относились к моему расстройству сна с особым пониманием, – говорит мне Винсент. – Так что спустя какое-то время я стал пропускать уроки, потому что мне приходилось слишком тяжело. Это было непросто».
Далия явно расстроена делами Винсента в школе, и, хотя она и не винит его учителей, ей кажется, что им недостает понимания и гибкости относительно медицинской проблемы Винсента. Причем пострадала не только учеба мальчика – его социальная жизнь тоже оказалась разрушена. Далия говорит: «Иногда мне приходилось разворачивать его друзей, когда они приходили к нему, скажем, в семь вечера, чтобы поиграть в приставку, а Винсент лег спать еще в пять. Так что мне приходилось говорить его друзьям: „Что же вы думаете? Он спит!” Им это казалось очень странным, потому что в семь вечера подростки никогда не спят», – с небольшой горечью смеется она.
Решительный настрой Далии разобраться с недугом Винсента в итоге привел к тому, что его направили к одному моему коллеге в детской больнице. История, рассказанная Винсентом и его матерью, типична для расстройства под названием синдром не-24-часового цикла сна-бодрствования, и это было подтверждено с помощью актиграфии – продолжительного отслеживания режима сна с помощью носимого устройства, своеобразной медицинской разновидности ныне повсеместно доступных фитнес-браслетов. По сути, внутренние часы Винсента работают по двадцатипятичасовому циклу, а не по двадцатичетырехчасовому, как у всех остальных. Каким-то образом супрахиазматическое ядро Винсента оказалось невосприимчивым к синхронизирующим факторам – тем самым внешним воздействиям, что обычно подстраивают внутренние часы, чтобы они шли в одном ритме с миром вокруг.