Нейрон по сути своей это клетка, передающая сигнал. Волна электрохимической энергии прокатывается по мембране клетки от одного края нейрона до другого со скоростью чуть более 60 м/с и действует на другой нейрон, мышцу или железу. Самые первые нервные системы могли быть устроены как простые сети нейронов, пронизывающие тело и соединяющие мышцы. По этому принципу нервных сетей существуют гидры. Это небольшие водные создания, прозрачные, похожие на цветы, в роли тела у них выступает мешок со множеством щупалец; они принадлежат к той же древней категории, что и медузы. Если коснуться гидры в одном месте, нервная сеть распространит сигнал повсюду и вся гидра дернется.
Нервная сеть не обрабатывает информацию не извлекает из нее какого-то значения. Она просто передает сигналы по телу, соединяет сенсорный стимул (прикосновение) с мышечной реакцией (подергивание). Но после возникновения нервной сети нервные системы довольно быстро перешли на новый уровень сложности: речь идет о способности усиливать некоторые сигналы относительно других. Форсирование сигнала простой, но мощный прием, один из основных способов, посредством которых нейроны манипулируют информацией. Это базовый компонент практически всех известных нам вычислений, происходящих в мозге.
Один из наиболее изученных примеров глаз краба. У этого животного сложные глаза со множеством детекторов, в каждом из которых есть нейрон. Когда свет падает на детектор, он активирует находящийся внутри нейрон. Пока все идет как надо. Но добавим щепотку сложности: каждый нейрон связан с ближайшими соседями и по этим связям они соревнуются друг с другом. Когда активируется нейрон в одном детекторе, он пытается приглушить активность нейронов в соседних, подобно человеку в толпе, который старается кричать громче всех и заглушить тех, кто рядом с ним.
В результате получается, что, если на глаз краба направлено размытое пятно света и на один из детекторов попадает самая яркая его часть, нейрон в этом детекторе развивает высокую активность, побеждает в соревновании и отключает соседей. Паттерн активности набора детекторов сигнализирует не только о пятне света, но и о том, что вокруг пятна кольцо темноты. Таким образом, сигнал усилен. Глаз краба берет размытую реальность из оттенков серого и повышает ее резкость, получая контрастную картинку, где тени темнее, а яркое ярче. Усиление сигнала прямое следствие того, что нейроны подавляют своих соседей: этот процесс называется латеральным торможением.
Описанный механизм в глазу краба, пожалуй, один из самых простых и базовых примеров, модельный экземпляр внимания. Сигналы соревнуются друг с другом, победители усиливаются за счет проигравших, и победившие сигналы затем влияют на движения животного. Это и есть моделирующая сущность внимания. Наше, человеческое, внимание просто усложненная версия, состоящая из подобных компонентов. Латеральное торможение, такое же как в глазу у краба, можно найти на любой стадии обработки информации в нервной системе человека от глаза до высших уровней мышления в коре головного мозга. Зарождение внимания лежит глубоко в эволюционной древности, ему более полумиллиарда лет, и произошло оно от удивительно простого нововведения (на тот момент, разумеется).
Крабы принадлежат к обширной группе животных под названием членистоногие, в которую входят пауки, насекомые и подобные им создания с твердыми сегментированными экзоскелетами. Они отделились от других животных около 600 млн лет назад. Самое известное вымершее членистоногое, у которого сегодня больше всего поклонников, это трилобит, существо из сочленений и ножек, похожее на маленького мечехвоста, которое главным образом копошилось на дне кембрийских морей примерно 540 млн лет назад. Когда трилобиты вымерли и оказались погребены в тончайшей взвеси осадка на дне океана, они превратились в окаменелости, у которых во всех подробностях сохранились фасеточные глаза. Если вы вглядитесь в выпученные очи ископаемого трилобита через лупу, то, скорее всего, вам удастся увидеть нетронутую мозаику отдельных детекторов. Судя по ископаемым остаткам, глаза трилобитов весьма напоминали глаза современных крабов и, должно быть, в них использовался тот же способ соревнования между соседними детекторами, чтобы повысить резкость обзора древнего морского дна.
Представьте себе животное, которое собирается по частям, сосредоточиваясь на каждом конкретном фрагменте. У такого животного любая часть тела будет работать как отдельный механизм, отбирая себе информацию и выделяя самые перцептивно значимые (насыщенные) сигналы. Один глаз скажет: Вот самое яркое пятно, не реагируй на остальные. А в это же время одна из ног пожалуется: Меня только что сильно ткнули вот сюда, не обращай внимания на легкие прикосновения рядом! Животное, способное лишь на такое, будет действовать как сборище отдельных деятелей, которые склеены друг с другом просто физически, при этом каждый выкрикивает свои сигналы и вызывает свои собственные действия. Поведение такого животного будет в лучшем случае беспорядочным.
Для того чтобы непротиворечиво реагировать на окружающую среду, животному нужно более централизованное внимание. Могут ли отдельные источники входящей информации глаза, тело, ноги, уши, химические сенсоры объединить свои данные, чтобы создать глобальную иерархию и отсортировать соревнование между сигналами? Подобное взаимодействие позволило бы животному выделить тот самый яркий объект в окружающей среде, который показался бы важнее всего в данный момент, и отреагировать единым, значимым образом.
Никто не знает, когда впервые появилось такое централизованное внимание, в частности, потому что никто не знает точно, у каких животных оно есть, а у каких нет. У позвоночных есть центральный процессор внимания, который я опишу в следующей главе. Но у беспозвоночных механизмы внимания не так тщательно изучены. У многих видов животных, например кольчатых червей и брюхоногих моллюсков, нет централизованного мозга. У них есть кластеры нейронов, или ганглии, разбросанные по всему телу для локальной обработки информации. Вероятно, нет у этих животных и централизованного внимания.
Более подходящие кандидаты на обладание им членистоногие, такие как крабы, насекомые и пауки. У них есть центральный мозг или, по крайней мере, скопление нейронов в голове, которое обильнее всех остальных в их телах. Эти крупные ганглии могли развиться в том числе из-за каких-то потребностей зрения. Поскольку глаза расположены в голове, а зрение самое сложное и нагруженное информацией чувство, голова получает самую большую долю нейронов. Некоторые аспекты обоняния, вкуса, слуха и осязания также сходятся в этом центральном ганглии. Насекомые мозговитее, чем мы думаем. Когда вы пытаетесь прихлопнуть муху, а ей практически всегда удается ускользнуть это не просто рефлекс. Скорее, у мухи есть то, что мы называем централизованным вниманием способность быстро сосредоточить ресурсы обработки информации на том фрагменте окружающего мира, который важнее всего в данный момент, чтобы выдать скоординированную реакцию.
Осьминоги суперзвезды среди беспозвоночных: их интеллект поразителен. Их относят к моллюскам как улиток и мидий. Моллюски появились, вероятно, около 550 млн лет назад и оставались довольно просто организованными по крайней мере, в том, что касается нервной системы, на протяжении сотен миллионов лет. У одной из ветвей развития, головоногих моллюсков, постепенно развились сложный мозг и сложное поведение; формой они стали напоминать современных осьминогов примерно 300 млн лет назад.
Осьминоги, кальмары и каракатицы поистине инопланетяне по отношению к нам. Так далеко от нас на древе жизни нет других разумных животных. Они показывают нам, что мозговитый ум не единичный феномен, так как он независимо развивался как минимум дважды: один раз в случае позвоночных, а затем снова у беспозвоночных. Осьминоги прекрасные хищники, а полагаются они на зрение. Хороший хищник должен обладать лучшей координацией и умом, чем его добыча, а использование зрения, чтобы обнаружить и распознать жертву, требует особо крупных моделирующих мощностей. Ни у какой другой сенсорной системы нет подобного пожарного шланга, хлещущего внутрь всевозможной информацией, и нет подобной необходимости в грамотном способе сосредоточиваться на полезных фрагментах этой информации. А значит, внимание для такого хищника решает всё. Может быть, этот-то образ жизни осьминога и повлиял на развитие его интеллекта.
По тем или иным причинам у этого животного развилась выдающаяся нервная система. Осьминоги могут использовать инструменты, решать задачи и демонстрируют неожиданные творческие подходы. Классическим стал пример, в котором эти моллюски научились откручивать крышки стеклянных банок, чтобы добраться до лакомства внутри. У осьминога есть центральный мозг, а также небольшие независимые процессоры в каждом щупальце; таким образом получается уникальная комбинация централизованного и распределенного управления. Также у животного, вероятно, есть модели самого себя: богатые, постоянно обновляющиеся сгустки информации для отслеживания своего тела и поведения. С инженерной точки зрения, чтобы функционировать эффективно, ему бы пригодились эти модели. Например, у моллюска может быть что-то вроде схемы тела, которая следит за его формой и структурой, чтобы координировать движения (возможно, у каждого щупальца есть своя схема себя). В этом смысле можно сказать, что осьминог знает о самом себе. Он обладает как этой информацией, так и сведениями об окружающем мире, и эти данные приводят к сложному поведению.
Но перечисленные действительно чудесные черты не означают, что у осьминога есть сознание.
Исследователи сознания иногда используют термин объективное осознание для обозначения того, что информация попала внутрь, обрабатывается и может повлиять на выбор поведения. Это определение задает невысокую планку: так можно сказать, что микроволновая печь осознает настройки времени, а беспилотный автомобиль надвигающееся препятствие. Да, осьминог объективно осознает себя и объекты вокруг. В нем содержится информация.
Но осознает ли он субъективно? Если бы осьминог умел говорить, мог бы он сообщить о субъективном опыте сознания так же, как мы с вами?
Давайте его и спросим. Проведите неправдоподобный мысленный эксперимент (и запомните его он нам еще пригодится в этой книге). Предположим, в нашем распоряжении оказался потрясающий научно-фантастический прибор назовем его Речинатор-5000, который переводит информацию в речь. В нем есть порт, к которому можно подключить голову осьминога, и прибор вербализует информацию, найденную в мозге.
Прибор может озвучить что-то вроде: Там рыба, если зрительная система осьминога содержит информацию о рыбе, плывущей неподалеку. Он может сказать: Я существо с кучей конечностей, которые могут двигаться так и сяк. Или: Чтобы достать рыбу из банки, нужно повернуть ту круглую штуку. Прибор бы многое сказал, отражая информацию, которая, как мы знаем, содержится в нервной системе осьминога. Но нам неведомо, произнесет ли он: У меня есть субъективный личный опыт осознание этой рыбы. Я не просто обрабатываю информацию о ней. Я ее переживаю. Я чувствую, каково это видеть рыбу. Мы не знаем, есть ли в мозге информация подобного рода, поскольку не в курсе того, что сообщают осьминогу его модели самого себя. У него, возможно, нет механизмов, чтобы смоделировать сознание или приписать себе это свойство. Применение понятия сознание по отношению к этому животному может оказаться нерелевантным.
Тайна осьминога пример того, что животное может быть сложным и умным, а мы тем не менее все еще не в силах ответить на вопрос о его субъективном опыте или даже о том, есть ли смысл задавать такой вопрос применительно к этому существу.
Возможно, один из источников путаницы здесь невольное, но мощное стремление человека приписывать сознание всему вокруг. Как я подчеркнул в первой главе, мы склонны видеть сознание у кукол и других, еще менее вероятных кандидатов. Люди иногда верят, что их домашние растения осознают. Осьминог, у которого богатый поведенческий арсенал и большие глаза, наполненные сфокусированным вниманием, является в некотором роде тестом Роршаха с чернильными пятнами, убедительно запускающим в нас сильное социальное восприятие. Мы не только умом понимаем, что он собирает объективную информацию о мире, мы не можем не чувствовать, что из этих задумчивых глаз исходит субъективное осознание. Но правда состоит в том, что мы этого не знаем, и наше ощущение сознающего разума говорит больше о нас, чем об осьминогах. Специалисты, которые изучают осьминогов, рискуют стать самыми ненадежными экспертами, потому что именно на них прежде всех остальных подействуют чары этих удивительных созданий. Позже, в пятой главе, я вернусь к всепроникающему аспекту человеческого сознания: оно инструмент в нашем социальном арсенале, и мы безотчетно приписываем его тем, кто действует вокруг нас.
Чтобы внести ясность: я не утверждаю, что у осьминогов нет сознания. Но нервная система этих моллюсков до сих пор настолько неполно изучена, что мы не можем сравнить организацию их мозга с организацией нашего и предположить, до какой степени могут быть похожи на наши их алгоритмы и модели самих себя. Для проведения подобных сравнений нам нужно заняться животными из своей собственной родословной позвоночными.
Глава 3Централизованный интеллект лягушки
В детстве я много времени проводил на ферме на севере штата Нью-Йорк. Каждое лето целыми ночами мы слушали брачное кваканье лягушки-быка в пруду за домом. Мы звали его Элвисом, а лягушку, чей голосок потоньше доносился в ответ, Присциллой. С тех пор я обожаю лягушек, а занявшись нейробиологией, захотел узнать, что происходит у них в головах.
У этих животных есть область мозга, которая называется тектум. На латыни это значит крыша, тектум крыша среднего мозга, самый заметный выступ на его верхушке. Он есть не только у лягушек. Возможно, лучше всего он изучен у амфибий, но присутствует также у рыб, рептилий, птиц и млекопитающих. Эта область мозга есть у всех позвоночных, и, насколько нам известно, ни у кого другого. Можно с немалой уверенностью предположить, что тектум развился примерно полмиллиарда лет назад у маленьких бесчелюстных рыб, общих предков позвоночных, и все потомки унаследовали эту часть мозга.
У людей тоже есть тектум, но у нас он расположен не на верхушке мозга. Это сравнительно небольшой выступ (точнее, их два по одному с каждой стороны), погребенный под кипами мозговых структур, которые расширились в нашем эволюционном прошлом. У людей и других млекопитающих он обычно называется верхним холмиком четверохолмия. Здесь для простоты я буду называть этот холмик тектумом.
Бóльшую часть эволюционной истории позвоночных тектум был вершиной интеллектуальных достижений: самый сложный процессор в центре мозга. У лягушки он принимает зрительную информацию и выстраивает из мира вокруг амфибии некий аналог карты. Каждая точка на округлой поверхности тектума соответствует точке в окружающем животное пространстве. Тектум с правой стороны мозга лягушки содержит точную карту зрительного поля левого глаза, то же самое с левым тектумом и правым глазом. Когда вокруг лягушки хаотично летает черная точка, глаза принимают эту информацию, зрительный нерв посылает сигналы в тектум, а тот запускает управление мышцами. В результате язык лягушки выстреливает с потрясающей точностью и ловит муху.
Логику такого устройства ввода-вывода особенно ярко продемонстрировал нейробиолог Роджер Сперри. В начале 1960-х гг. он провел на лягушке операцию: отделил глаза, перевернул их на 180° и вставил обратно. Глаза прижились. У лягушек удивительные способности к регенерации. Зрительный нерв заново пророс от глаз к тектуму и восстановил внутреннюю зрительную карту. Когда подопытная лягушка вновь начала видеть, при появлении мухи над головой она стала выбрасывать язык вниз. Если муха жужжала справа от лягушки, язык вылетал влево. Централизованный интеллект лягушки это простой, но идеально эффективный механизм, который собирает сигналы от нервов и подбирает для них соответствующие реакции. К сожалению, манипуляции ученых его обманули. Модифицированную лягушку пришлось кормить с рук, иначе она бы погибла от голода.
Тектум лягушки занят не только зрением. Он также собирает информацию от ушей и осязательных рецепторов на коже. Карта поверхности тела лягушки, а также слухового и зрительного пространств вокруг животного сходятся и частично интегрируются в тектуме. Это высший уровень интеграции в мозге амфибий: центральный процессор, который собирает воедино разрозненные сигналы, поступающие из окружающей среды, сосредоточивается на самом важном событии, происходящем в каждый конкретный момент, и запускает реакцию. Тектум механизм централизованного внимания лягушки.