Нейромифология. Что мы действительно знаем о мозге и чего мы не знаем о нем - Феликс Хаслер 5 стр.


То же самое относится к возможности публикации результатов собственных исследований в хорошо дотируемом специальном журнале. С обозревателями научных журналов приставка «нейро-» может творить особые чудеса. Даже если неясно, почему решение того или иного вопроса дополнительно потребовало привлечения результатов магнитно-резонансной томографии или каков смысл визуализационного исследования с теоретико-познавательной точки зрения. Обстоятельство, которое много лет назад могло побудить стэнфордского когнитивного психолога Стивена Косслина задать широко цитируемый сегодня вопрос: «Если нейровизуализацияэто ответ, где же тогда вопрос?»

Глава втораяНейродоказательные машины

Критическая оценка методов визуализации

В 1990-е, в «десятилетие мозга», позитронно-эмиссионные томограммы мозга приобрели статус фирменного знака. Они символизируют науку, прогресс, биологическую самость, цифровую визуализацию и техническую силу прогресса, все сразу.

Статья Вильгельма Конрада Рентгена «О новом виде лучей» (1895) произвела революцию в медицине. Уже первый анатомический рентгеновский снимок в историируки жены Рентгена Анны Берты с обручальным кольцомне оставлял сомнений: теперь снаружи можно было заглянуть внутрь тела.

Еще одним историческим днем для медицинской диагностики стало 28 августа 1980 года. В Абердинском университете физик Джон Маллард впервые выполнил сканирование всего тела человека методом магнитно-резонансной томографии. Первое структурное МРТ-исследование пациента показало, что у несчастного шотландца первичная опухоль в груди и метастазы в костях. Всего через несколько лет после «нулевого сканирования» Малларда структурная магнитно-резонансная томография получила всемирное признание. Хорошо себя зарекомендовав, сегодня МРТ незаменима в медицинской диагностике. Она может спасти жизнь и уже сделал это в тысячах случаев. Однако для многих пациентов магнитно-резонансная томограмма также становится трагической визуализацией смертного приговора.

Результатом анатомического МРТ-обследования является более или менее точное псевдофотографическое изображение того, «что существует на самом деле». С этой точки зрения структурное МРТ-изображение похоже на рентгеновский снимок, правда, при его получении используется другой принцип измерений, а техническая сложность его исполнения намного выше. На рентгеновском снимке видно, где сломана кость, тогда как структурное МРТ-изображение показывает, например, анатомическую локализацию опухоли. Возможности применения МРТ выходят далеко за пределы простой диагностики. В форме «хирургии с МРТ-поддержкой» эта процедура уже несколько лет используется также для контроля оперативных вмешательств.

МРТсимвол культуры и священный объект

Конечно, даже структурное МРТ-исследование может ошибаться. Поэтому метод отнюдь не совершенен. Еще до того, как будет выполнена магнитно-резонансная томография, необходимо принять множество решений, которые повлияют на ее результаты. Например, необходимо указать толщину среза при сканировании. Если она выбрана слишком большой, могут быть пропущены небольшие повреждения или патологические изменения. Однако если толщина среза оказывается слишком маленькой, ухудшается качество томограммы или сканирование длится неоправданно долго. Исследование машиной живого человека влечет за собой сложный перевод его биологической сущности в числа, которые, в свою очередь, преобразуются в изображения. И в конце цепи этих преобразований находится несовершенный человек, обычно радиолог, который дешифрует полученные изображения, оценивает их и ставит диагноз. Как и в любом методе визуализации, в МРТ-изображениях всегда появляются необъяснимые технические артефакты. Для этих пятен неясного происхождения радиологи придумали даже особое название: «неопознанные яркие объекты».

Несмотря на некоторые недостатки, структурная МРТ обладает аурой высокоприоритетной диагностической процедуры, лучшей, более объективной и современной, нежели другие диагностические исследования. Следуя этой логике, наличие сканеров для проведения МРТ называется важным показателем качества медицинского обслуживания в исследованиях уровня его развития в разных странах.

Американский социолог Келли Джойс уже рассматривает МРТ как «символ культурысвященный объект, вокруг которого вращаются вопросы о личном здоровье, идентичности и многих жизненных дилеммах». Даже Далай-лама в одной из своих речей приводил метод МРТ в качестве примера высоких технических достижений нашего времени.

Несколько лет назад великолепная репутация МРТ вдохновила американские клиники предлагать сканирование всего тела здоровым и не имеющим никаких симптомов болезней (но платежеспособным) потенциальным клиентам. Эта коммерциализированная форма здравоохранения также рекламируется на радио и телевидении. Завуалированный посыл рекламы: все, что требуется для обнаружения раннего заболевания,  это проведение МРТ тела. Стратегия частнохозяйственной продажи снимков тела для профилактики заболеваний также является ярким примером современной тенденции рассматривать пациентов как потребителей медицинских услуг.

Поп-арт как фактор влияния

Развитие МРТ и его внедрение в качестве новой медицинской диагностической процедуры в значительной степени также связано с веяниями времени. Так, первые МРТ-изображения в начале 1980-х годов еще были цветными. Даже пестрыми. По словам медицинского социолога Келли Джойс, в этом обстоятельстве повинен поп-арт того времениЭнди Уорхол и Рой Лихтенштейн были в Америке тех лет настоящими иконами. Однако по настоянию профессиональных радиологов, которые ранее имели дело только с рентгеновскими изображениями и компьютерными томограммами и не привыкли к такой пестроте, снимки вскоре были переориентированы на шкалу серого, используемую и сегодня. Такова была уступка «черно-белой культуре зрительного восприятия» радиологов. Кроме того, общепринятый первоначально термин «ядерная магнитно-резонансная томография» вскоре стал восприниматься слишком неоднозначно. «Ядерный» в США 1980-х годов ассоциировался с гонкой ядерных вооружений, ядерной аварией на АЭС «Три-Майл-Айленд» и радиацией, которая может выйти из-под контроля в любое время. Только из-за этого термин утратил слово «ядерный» и сегодня употребляется в сокращенном виде как «магнитно-резонансная томография».

В начале 1990-х годов произошли новые решающие изменения в технологиях. Метод анатомической визуализации структурной МРТ развился до функциональной МРТ (фМРТ). Снимки, получаемые разными методами, выглядят очень похожими, но по сути они совершенно разные. Так как функциональные характеристики мозга могут оцениваться только опосредованно. На практике это достигается путем измерения зависимых от времени локальных изменений кровотока и потребления кислорода.

20-й день рождения фМРТхороший повод для его исторической оценки. Раннему пионеру функциональной визуализации в свое время, вероятно, даже не снилось, что феномен, который он наблюдал, 120 лет спустя станет нейрофизиологической основой для всей нейроиндустрии. Итальянский физиолог Анджело Моссо в 1870 году изучал перепады артериального давления в мозговых артериях. Через сделанные нейрохирургическим методом отверстия в черепе Моссо мог наблюдать у пациентов пульсацию кровеносных сосудов головного мозга. У одного из пациентов, крестьянина Бертино, туринский врач обнаружил усиление пульсации в полдень во время звона церковных колоколов. При этом кровяное давление и пульс, измеренные на руке пациента, не изменились. Затем Бертино сообщил, что церковные колокола напомнили ему о наступлении времени для молитвы. Из чего Моссо сделал вывод, что воспоминание о молитве вызвало изменения в кровотоке мозга Бертино. Именно такое соотнесение изменений церебрального кровотока с умственными процессами является основным принципом современной фМРТ.

Что мы видим, когда смотрим на снимок мозга?

Основная предпосылка фМРТ состоит в том, что мозг активен именно там, где более активно происходит кровообращение и, соответственно, где поглощается больше кислорода. Вскоре после активации нейронных сетей усиление кровотока вызывает приток богатого кислородом гемоглобина. В то же время концентрация гемоглобина, не содержащего кислород (дезоксигемоглобина), в этом месте снижается.

Именно эти изменения фиксируются с помощью стандартной процедуры фМРТ, так называемой технологии BOLD-фМРТ. Знаменитые цветные пятна, BOLD-сигналы, создаются на компьютере с помощью математических расчетов после проведения фМРТ. Таким образом, они представляют собой не что иное, как образно интерпретированные в виде графических изображений статистические сведения об изменениях кровотока и потребления кислорода в мозге. Для фМРТ особенно подходит общий термин «процесс визуализации», так как это словосочетание подчеркивает, что подобная визуализационная технология связана не просто с фиксацией изображения, но с производственным процессом.

Почти не встречающее возражений предположение, что фМРТ отображает истинную нейронную активность, пусть и опосредованно, через механизм BOLD-сигналов, совсем не так достоверно, как кажется. Хотя благодаря прямому физиологическому исследованию мозга животных было выявлено, что нейронная активность обычно связана с увеличением потребления кислорода, в исследовании, проведенном в Лаборатории нейрососудистой визуализации Калифорнийского университета в Сан-Диего, было также показано, что нейронная активность иногда приводит к сужению, а не к расширению кровеносных сосудов. И, следовательно, к снижению, а не к усилению кровотока. Это, разумеется, является полной противоположностью стандартной интерпретации, согласно которой оценивают все данные фМРТ. Поэтому историк науки Фернандо Видаль и философ Франсиско Ортега совершенно справедливо спрашивают: «Что же мы видим, когда смотрим на снимок мозга?»

Видеть значит верить

Так как структурные и функциональные МРТ-изображения очень похожи, большинство неспециалистов, а также многие профессионалы не из цеха нейровизуализации, не поняли, что теперь томограммы больше не передают то, «что существует на самом деле», как это было в случае с рентгеновскими снимками. Видеть значит веритьдля человека, по природе склонного к иконофилии, красочные томографические изображения автоматически обретают соблазнительную силу истинного образа.

Но на самом деле все обстоит совершенно иначе. Нейровизуализационные изображенияэто не просто нечеткие фотографии работающего мозга низкого разрешения, а результат множества технологических процессов. До получения итогового образа необходимо принять длинный ряд технических решений. От обработки исходных данных со сканера до окончательных статистических расчетов. Целая «цепь заключений», как было сказано в одной из переводных статей журнала Nature Neuroscience.

При этом слепо верить этой «цепи заключений» обычно не стоит: «в итоговой [научной] публикации обычно содержится сильно редуцированная часть оригинальных данных, отфильтрованная в результате серии преобразований и оценок, часто довольно своеобразных. Не существует единого мнения о правильном способе проведения этих исследований; каждое из них имеет свои сильные и слабые стороны, кроме того, постоянно разрабатываются новые методы». Один лишь выбор уровня статистической значимости требует достижения сложного баланса между возможными ложнопозитивными и ложнонегативными результатами.

В Nature Neuroscience также указывалось, что «трудно создавать научные статьи, описывающие (и, самое главное, объясняющие) сложные закономерности активации мозга. Поэтому часто наблюдается тенденция к консервативным ограничениям, что позволяет сократить количество фактов активации и представить более простой результат».

Однако сложности нейровизуализационных исследований начинаются задолго до того, как будут проведены измерения. Главная проблема заключается в разработке содержательного общего проекта исследования с надежными экспериментальными параметрами и соответствующими контрольными условиями. «Нынешняя проблема визуализации состоит в том, что бесконечно сложно выполнять правильные исследования, тогда как получить изображения очень легко»,  делает вывод пионер нейровизуализации Стивен Петерсон.

Вне зависимости от всех оговорок, видеть значит верить. Психологи Дэвид Маккейб и Алан Кастел изучили, как испытуемые оценивают достоверность фиктивных результатов нейронаучных исследований, когда им показывают или не показывают изображения мозга. Во время трех различных экспериментов, в которых сфабрикованные данные когнитивной науки были представлены просто в виде текста, в виде текста и диаграммы и в виде текста и изображений мозговой активности, тестируемые студенты всегда считали «научно наиболее убедительными» тексты, сопровождаемые изображениями. Маккейб и Кастел заключили, что «часть очарованияи правдоподобияисследования с применением метода визуализации заключается в убедительности самих изображений мозга». Мозговые сканерыэто доказательные машины. Для историка науки Хагнератакже и в том смысле, что они «сводят до сих пор плохо понятные причинные связи к поверхностному рассмотрению».

Арифметика любви

С другой стороны, в общественном восприятии сканеры для проведения МРТ имеют репутацию настоящей «машины объективности». Внушительные, футуристические, почти магические высокотехнологичные объекты, которые обнажают скрытое нутро человека. При этом существует множество веских причин скептически относиться к претендующим на объективность фМРТ-изображениям. Чтобы обосновать это, сделаем обзор множества проблемных областей функциональной магнитно-резонансной томографии.

Во-первых: обычно в качестве итога функциональных нейровизуализационных исследований мы получаем разностные изображения. То, что мы видим, является результатом процесса субтракции. Процедура подчиняется простой и, прежде всего, очевидной логике. Чтобы иметь возможность засвидетельствовать определенную работу мозга, испытуемый в сканере подвергается двум опытам. Измеряется изменение местного потребления кислорода крови в интересующих экспериментальных условиях (условиях испытания), а также в контрольных условиях. В поисках, скажем, участка мозга, отвечающего за романтическую любовь, влюбленным показывают фотографии их любимого партнера, а также фотографии друзей того же возраста и пола, к которым у них нет «истинной, глубокой и сумасшедшей» привязанности.

Затем МРТ-изображение, выполненное в контрольных условиях, просто субтрактируют (вычитают) из снимка, который сделан при созерцании испытуемым предмета его страсти. Так надеются устранить с изображения все неспецифические активности мозга, которые не имеют отношения к влюбленности. Расчет для корректировки активности делают следующим образом: (влюбленный + все остальное)(не влюбленный + все остальное) = влюбленный. В представленном здесь примере изучения влюбленности расчеты руководителя исследований Андреаса Бартельса и Семира Зеки дают следующий результат: влюбленный = = активация передней части поясной извилины и срединной части островковой доли коры головного мозга, а также путамена и хвостатого ядра. Кроме того, деактивация задней части поясной извилины и миндалин, а также правых лобной, теменной и височной долей коры головного мозга.

Логично, что через несколько лет Семир Зеки, видный нейроученый из лондонской Лаборатории нейробиологии Wellcome, посвятил себя темной стороне человеческих эмоций. В рамках исследования «Нейронные корреляты ненависти» испытуемым, находившимся в сканере, теперь уже нужно было не любить от всего сердца, а искренне ненавидеть. Для этого были подобраны люди, которые «демонстрируют сильную ненависть к тому или иному индивидууму». При этом объектами ненависти всегда являлись бывший сексуальный партнер или коллега по работе. Таким образом был обеспечен надежный натуралистический подход к исследованию. Степень враждебности получила количественную психометрическую оценку по «шкале страстной ненависти».

Назад Дальше