Физика в быту - Алла Борисовна Казанцева 2 стр.


Музыкальный звук мы можем пропеть, немузыкальныйне можем. У музыкальных звуков мы различаем высоту тона (то есть отождествляем звук с определённой нотой музыкального строя), у немузыкальныхнет. К примеру, пение птиц красиво, но записать его нотами и воспроизвести голосом или на музыкальном инструменте не получается (разве что «ку-ку» можно спеть вполне узнаваемо).

Ещё у музыкальных звуков есть тембр«звуковой окрас», позволяющий отличить ноту «до», взятую на рояле, от такой же ноты, взятой на другом инструменте.

Где же в форме колебаний спрятаны все эти особенности музыкального звука? И как можно классифицировать многообразие всевозможных форм колебаний, чтобы можно было «подделывать» (синтезировать) нужные звуки или сделать программы их распознавания?

Рис. 3. Пример разложения периодического колебания (кривая 3) на гармоники (кривые 1 и 2)

Оказывается, любое периодическое движение чисто математически может быть представлено как сумма гармонических колебаний с кратными частотами, то есть с частотами, полученными умножением некоторой основной частоты f0 на целые числа: 2, 3, 4 (это известная математикам теорема Фурье). Наименьшая частота этого ряда (f0) называется основной, а колебание с этой частотойосновным колебанием или первой гармоникой. Основная частота определяется периодом исходного движения. Колебания с кратными частотами 2f0, 3f0, 4f0 называют гармоническими обертонами или просто гармониками (второй, третьей, четвёртой и так далее до бесконечности). Многообразие сочетаний различных амплитуд (и фаз) гармоник обеспечивает все возможные формы результирующего колебания.

Процедура выделения простых гармоник из сложного колебания называется спектральным (или гармоническим) анализом. На рисунке 3 приведён пример разложения колебания на гармоники (в данном примере понадобилось всего две гармоники с частотами f0 и 2f0). Такой анализ можно произвести математически, а можно разложить звук на гармоники с помощью прибораспектроанализатора.

Нарисуем график, состоящий из вертикальных отрезков: высоты отрезков соответствуют амплитудам гармоник, их положение на горизонтальной осичастотам. Такая картинка изображает спектр колебания (спектр звука). Итак, спектр звука показывает, гармоники (обертоны) каких частот и с какими амплитудами присутствуют в данном звуке.

Рис. 4. Спектр колебания, представленного на рис. 3

Основная частота определяет высоту тона, а все остальные (высшие) гармоники создают неповторимый тембр звука.

Основная частота для самого низкого мужского голоса (бас) составляет 80 Гц. Основная частота для самого высокого женского голоса (сопрано) достигает 1050 Гц. Обертоны же могут простираться до частот порядка 50 тысяч герц, выходя за пределы частотного диапазона слухового восприятия.

Основная частота звуков, издаваемых музыкальными инструментами, лежит в диапазоне 405000 Гц.

Нота «ля» первой октавы имеет частоту 440 Гц.

Как правило, первая гармоника (основная частота) присутствует в музыкальном звуке с наибольшей амплитудой. Но это не обязательно так. В спектре флейты, фагота, корнета и трубы некоторые высшие гармоники столь же сильны, как и основная частота, или даже сильнее. Но ухо не проведёшь! Оно безошибочно распознаёт основную частоту, даже если её вовсе нет в спектре, а присутствуют лишь гармоники 2f0, 3f0, 4f0, Так, например, музыкальный звук, состоящий из набора частот 200, 300, 400 и 500 Гц, воспринимается как звук высотой 100 Гц, хотя этой частоты нет в наборе. Другими словами, мы слышим отсутствующий звук! Это связано с особенностями человеческого уха, которое вносит свои искажения. Так, при возбуждении его двумя частотами f1 и f2 в нём возбуждаются также суммарная и разностная частоты f1+f2 и f1f2 вместе со всеми их гармониками. Чем больше амплитуда исходных колебаний, тем больше слышны «лишние» частотыих называют субъективными тонами. В нашем примере, когда в спектре объективно присутствуют частоты 200, 300, 400 и 500 Гц, но нет основного тона 100 Гц, в ухе возникают колебания разностных частот 300200=100 (Гц), 400300=100 (Гц) и т. д., то есть колебания отсутствующего основного тона. Для любого музыкального звука основная частота эффективно усиливается разностными частотами и обязательно будет опознана ухом.

Бесконечное разнообразие спектров музыкальных звуков, то есть сочетаний частот и амплитуд гармоник, объясняет разнообразие тембров звучания. В природе не существует «простых» звуков, тембрально не окрашенных (состоящих только из колебаний одного основного тона). Такой звук можно искусственно синтезировать, преобразовав электромагнитное колебание одной частоты в звуковое с помощью так называемого звукового генератора, причём ухо воспринимает этот звук как весьма противный. Более того, человеку труднее опознать высоту тона «чистого» звука, чем звука с тембральным окрасом, и мы уже поняли почему. Из инструментальных звуков наиболее «чистым», почти без примеси гармоник, является звук камертона.

Если в звуке много гармоник, то он воспринимается «богатым». Так, в спектре голоса хорошего оперного певца гораздо больше обертонов, чем в спектре любителя, поющего ту же арию.

Но если в спектре слишком много гармоник, то звук кажется «грязным», а если там много верхних гармоникто и резким, крикливым, неприятным.

Тембр детских звучащих книжек очень бедный. Он «урезан» буквально до одной-двух гармоник. Такие книжки портят слух.

Подумаем: почему низкие звуки на рояле звучат «богато» (рояль рокочет), а верхние звуки«бедненько»? Ответ прост. Ухо немолодого человека не слышит гармоники с частотами выше 1215 тысяч герц. Значит, высшие гармоники высоких звуков просто не воспринимаются. Верхние ноты рояля не виноваты, виноваты наши уши.

А чем можно объяснить пристрастие многих меломанов к громкой музыке? Легко сообразить, что она тембрально богаче: ведь для того, чтобы мы могли слышать высокие обертоны, они должны быть достаточно интенсивными (вспомним, что чувствительность уха быстро падает по мере приближения к границам звукового диапазона). Правда, увеличение громкости имеет смысл, только если вы используете качественную звуковую систему, не обрезающую высшие гармоники.

Слушая современные реставрированные перезаписи голосов великих певцов прошлого, удивляешься: что же такого удивительного люди в них находили? А дело в том, что при реставрации вместе с шумами старой грамзаписи удаляются и многие обертоныи голос лишается своего волшебства.

Что за шум, что за рёв

Непериодические движения рождают немузыкальные звуки и шумы. Некоторые немузыкальные звуки вполне красивы, например звон колоколов и пение птиц. А другие воспринимаются как шум и рёв. Почему?

Немузыкальный звук тоже имеет свой спектр, но этот спектр уже не является набором обертонов с частотами, кратными наименьшей основной частоте. Он может содержать или «хаотичный» набор отдельных частот, или вообще все частоты в некотором диапазоне (такой спектр называют непрерывным).

Посмотрим, например, на спектр звука колокола. Хотя звон колокола похож на музыкальный звук, подобрать соответствующую ему ноту звукоряда сложно, и как ни пытались композиторы изобразить перезвон колоколов на рояле или с помощью оркестра, узнаваемым оставался скорее ритмический рисунок перезвона, нежели само звучание колоколов. А почему? Спектр звучания колокола представляет собой ряд обертонов, но их частоты не кратны наименьшей частоте. Воспринимаемая высота тона колокола определяется не наименьшей частотой, как для музыкальных звуков, а обертоном, доминирующим сразу после удара. Спустя некоторое время в звуке колокола начинают преобладать более низкие обертоны, и восприятие тона меняется. И если спектры всех роялей в основном похожи друг на друга, то спектры звуков колоколов совершенно индивидуальны.

Звуки с непрерывным спектром воспринимаются как шумы. Если полоса частот не слишком широка, мы можем грубо оценить высоту звука: рычание тигранизкий звук (полоса низких частот), крик павлинавысокий. Если частоты более-менее равномерно распределены по всему звуковому диапазону, получается так называемый белый шум (пример: рёв близкого водопада).

Пение птиц ещё труднее передать звуками музыки, чем звучание колоколов, хотя шумом его тоже не назовёшь. С точки зрения спектра, это нечто промежуточное между звоном колокола и шумом. Каждая «нота» птичьего пения содержит не ряд кратных частот, как музыкальный звук, и не набор отдельных обертонов, как звук колокола, а несколько узких непрерывных полос частот, причем эти полосы во время песни «ползут» вверх или вниз по шкале частот, совершают резкие взлёты и падения. Именно эти взлёты и падения при переводе птичьего пения на язык музыки композиторы имитируют скачками на те или иные интервалы.

Частоты некоторых птичьих голосов простираются до 50 тысяч герц, уходя в область ультразвука, так что мы слышим лишь часть их песен.

Очень короткие звуки (стук в дверь, хлопок в ладоши) также воспринимаются как немузыкальные. Ведь нашему слуховому аппарату требуется некоторое время для определения периода колебаний и частоты основного тона, а при коротких звуках он просто не успевает это сделать. Спектры коротких звуков непрерывны, как и спектры шумов. Если ширина полосы частот невелика, мы можем приблизительно определить высоту тона, особенно в сравнении с другими подобными звуками. Вспомните, например, детский деревянный ксилофон, состоящий из дощечек разной длины. Удар по одной дощечке воспринимается просто как стук (немузыкальный звук), но ударяя по ряду дощечек-клавиш, мы уже слышим гамму.

Как создать музыкальный звук?

Одни предметы издают музыкальные звуки, а другиенемузыкальные. Самый простой, известный с древних времён источник музыкальных звуковнатянутая струна. Именно с изучения звучания струн началась математическая теория музыки, и основы её заложил в Древней Греции Пифагор (570490 гг. до н. э.).

Самые простые движения, которые могут совершать точки струны, изображены схематически на рисунке 5: каждая точка движется туда-сюда, словно маятник, в результате струна изгибается так, что её форма соответствует части синусоиды. Длина полного периода такой синусоиды равна длине волны. Если оба конца струны закреплены, то на длине струны укладывается целое число полуволн (на верхнем рисункеодна полуволна, на среднемдве, на нижнемтри). Такие колебания струны называются стоячими волнами или собственными колебаниями. Частоты этих колебаний кратны друг другу. Если одной полуволне соответствует частота f0, то частоты колебаний для более коротких волн равны 2f0 и 3f0. Как вы понимаете, возможны также колебания с частотами 4f0, 5f0 и так далее. Частота f0 является основной, а все остальныеобертонами или высшими гармониками.

Самое интересное: если вы просто ущипнёте струну, то многие обертоны возбудятся одновременно, и соответствующие им движения наложатся друг на друга, в результате форма струны в процессе колебаний будет уже не синусоидальной, а более сложной. Это как «спектральный анализ наоборот»: сложение простых гармоник даёт в результате сложное колебание.

Ущипнув струну, мы услышим музыкальный звук, высота тона которого соответствует основной частоте f0, а наличие обертонов придаст звуку тембральный окрас. Щипая струну в разных местах, мы меняем амплитуды обертонов и, значит, меняем тембр. Например, щипок ровно посередине струны исключает из движений чётные гармоники 2f0, 4f0 и т. д., так как для этих гармоник средняя точка струны должна быть неподвижна.

Рис. 5. Простейшие колебания струны (первая, вторая и третья гармоники)

Какими параметрами струны определяется её основная частота? Как видно из рисунка 5, чем длиннее струна, тем больше длина волны первой гармоники, а значит, частота колебаний меньше (низким звукам рояля соответствуют самые длинные струны, высокимсамые короткие). Основная частота f0 зависит также от натяжения струны: увеличивая натяжение, мы увеличиваем основную частоту (именно путём изменения натяжения струн настройщик добивается нужной частоты звука).

Как и для бегущих волн, длина стоячей волны λ связана с частотой колебаний частиц и скоростью v распространения волны универсальной формулой λ = v/f. Длина волны первой (основной) гармоники, как видно из рисунка 5, в два раза больше длины l струны: λ = 2l. Так что основная частота струны f0 = v/λ = v/2l. Увеличение натяжения струны приводит к увеличению скорости волн v, а значит, и к увеличению основной частоты.

Ещё одним простым телом, рождающим музыкальные звуки, являются цилиндрические трубы, ширина которых гораздо меньше длины (вспомним, например, трубы оргáна). Главным звучащим телом в трубах является наполняющий их воздух. Возбуждая на одном конце трубы движение воздуха с помощью вибратора, мы приводим в колебательное движение весь столб воздуха в трубе, и он рождает звуковую волну, бегущую от трубы к вашему уху. Основная частота f0 определяется длиной воздушного столба: чем длиннее труба, тем ниже её звук, как и для струны. И также наряду с основной частотой возбуждаются обертоны с кратными частотами.

Струны и воздушные трубыоснова всех музыкальных инструментов. Именно они рождают музыкальные звуки. Предметы же более сложных форм являются источниками немузыкальных звуков.

Можно ли увидеть звук?

Любой твёрдый предмет будет издавать те или иные звуки, если по нему ударять или, к примеру, водить по нему смычком. И у любого предмета конечных размеров, как и у струн, есть характерный набор собственных колебанийвозможных простейших движений его частиц. У большинства объемных тел частоты собственных колебаний образуют непрерывный спектр в пределах определённой полосы частот, зачастую весьма широкой, то есть воспринимаются ухом как шум. Например, ударив по столу, вы слышите звук, создаваемый возникающими колебаниями стола, но высоту тона определить не можете. Можно только предсказать, что шум от удара по массивному шкафу будет более низкочастотным, чем от удара по небольшому столику.

Немецкий физик и музыкант Эрнест Хладни сумел сделать видимыми собственные колебания плоских пластин разной формы (круглых, квадратных и прочих). Для этого он возбуждал в них колебания с помощью скрипичного смычка (рис. 6). При этом пластины издавали немузыкальные звуки разной степени «противности». На поверхность пластин он насыпал мелкий песок, который слетал с активно колеблющихся областей и концентрировался в тех местах, которые оставались практически неподвижными. Проводя смычком по краю пластины в разных местах, под разными углами и с различной скоростью, можно возбуждать различные собственные колебания и получать самые разные картины: иногда простые, иногда сложные, иногда красивые, иногда беспорядочные. Каждому типу колебаний соответствуют определённая «песочная картина» и своё неповторимое звучание.

Рис. 6. Примеры фигур Хладни, полученных с помощью насыпанного на поверхность колеблющихся пластин песка

Резонанс и резонаторы

Но вернёмся к музыкальным звукам и струнам. Остаётся вопрос: почему тембры разных струнных инструментов (рояля, скрипки, виолончели и прочих) столь отличаются друг от друга, хотя струны везде практически одинаковые? Всё дело в резонаторах. Давайте разберёмся, что это такое.

До сих пор мы говорили о собственных колебаниях телтаких колебаниях, которые они совершают «по своему сценарию», стоит только вывести их из равновесия, сообщив запас энергии (ущипнуть струну, постучать по столу, ударить по металлической пластинке, провести смычком и т. д.). Как мы уже знаем, собственные колебания происходят с собственными частотамис любой из них или одновременно со многими. А что будет, если мы будем извне «навязывать» упругому телу колебания с какой-то частотой? Возникнут колебания, которые называют вынужденными.

Попробуйте закрепить один конец длинного шнура (желательно эластичного), а другой конец периодически раскачивать рукой. По шнуру побежит какая-то рябь. Но постарайтесь подобрать такую частоту качаний, чтобы на длине шнура уложилась одна или несколько полуволн (как на рисунке 5)  шнур отзовётся колебанием значительной амплитуды. Мы наблюдаем при этом явление резонансарезкое возрастание амплитуды вынужденных колебаний при совпадении частоты вынуждающего периодического воздействия с любой из собственных частот.

Назад Дальше