Після цього два спостерігачі вже не будуть еквівалентними. Виявляється, що, коли спостерігач, який прискорювався чи сповільнювався, повернеться назад у початкову точку, він побачить, що постарів значно менше за свого колегу, який весь цей час перебував у рівномірному русі.
Це звучить наче наукова фантастика, і це дійсно стало поживним матеріалом для значної кількості як гарних, так і поганих фантастичних творів, оскільки робить принципово можливим якраз такий спосіб космічних перельотів галактикою, який зображено в численних кінофільмах. Однак існують кілька суттєвих ускладнень. Хоча завдяки цьому космічний корабель у принципі може облетіти галактику, уклавшись у тривалість людського життя, і Жан-Люк Пікар може пережити всі пригоди, показані в серіалі «Зоряний шлях», командувачам Зоряним флотом було б дуже важко організувати хоч якесь командування та керування хоч якою-небудь федерацією. Місія кораблів на кшталт «Ентерпрайза» могла тривати пять років із точки зору екіпажу на його борту, проте кожна подорож корабля від Землі до центру галактики й назад на білясвітловій швидкості з точки зору населення їхньої рідної планети зайняла б десь шістдесят тисяч років. Гірше того, для забезпечення однієї такої мандрівки знадобилося б більше пального, ніж маса всієї галактики, принаймні за умов використання традиційних ракет такого типу, який наявний наразі.
Утім, якщо відкинути всі науково-фантастичні негаразди, «уповільнення часу»а саме так називається релятивістське сповільнення годинників стосовно рухомих обєктівабсолютно реальна річ, яка щодня відчувається тут, на Землі. Приміром, у прискорювачах високоенергетичних частинок на кшталт Великого адронного колайдера ми регулярно розганяємо елементарні частинки до швидкостей, які становлять 99,9999 % швидкості світла, а під час дослідження того, що сталося, спираємося на релятивістські ефекти.
Проте релятивістське вповільнення часу впливає на нас і в буденному житті. Щодня ми на Землі зазнаємо бомбардування космічними променями. Якщо взяти лічильник Ґейґера й стати посеред поля, лічильник клацатиме кожні кілька секунд, реєструючи зіткнення з високоенергетичними частинками, які називаються мюонами. Ці частинки породжуються там, де високоенергетичні протони космічних променів врізаються в атмосферу, породжуючи зливу інших, легших частинок, зокрема мюонів, які є нестабільними, із часом життя приблизно одна мільйонна частка секунди, після чого розпадаються на електрони (і мої улюблені частинкинейтрино).
Якби не сповільнення часу, на Землі ми ніколи не зафіксували б ці мюонні космічні промені. Адже мюон, який летить із білясвітловою швидкістю, за мільйонну частку секунди, що відділяє його від розпаду, подолає десь близько трьохсот метрів. Проте мюони, що падають на Землю, долають двадцять кілометрів, що приблизно становить дванадцять із половиною миль, які відділяють верхні шари атмосфери, де вони утворюються, від нашого лічильника Ґейґера. Це можливо лише в тому разі, якщо внутрішні «годинники» мюонів (які змушують їх розпадатися приблизно через мільйонну частку секунди) ідуть повільніше стосовно наших годинників на Землі; від десяти до ста разів повільніше, ніж вони йшли б, якби утворювалися в стані спокою в земній лабораторії.
* * *
Останній наслідок здогадки Ейнштейна, що швидкість світла має бути сталою для всіх спостерігачів, виглядає навіть іще парадоксальнішим за інші, почасти через те, що стосується зміни фізичної поведінки обєктів, які ми можемо побачити й помацати. Проте він іще й допоможе нам повернутися до наших витоків і зазирнути в новий світ поза обмеженнями нашої звичної приземленої уяви.
Попри те, що перетравлення наслідків із цього результату потребує часу, сам він формулюється дуже просто. Коли я несу предмет на кшталт лінійки й рухаюся швидко порівняно з вами, з вашої точки зору моя лінійка буде коротшою, ніж вона є для мене. Скажімо, я можу виміряти, що її довжина становить 10 см:
Але для вас вона може бути завдовжки лише 6 см:
Звісно, ви можете сказати, що це ілюзія, адже як може той самий предмет мати дві різні довжини? Атоми не можуть стиснутися тільки для вас, залишившись на місці для мене.
Утім, хай там як, але повертаємося до питання, що є «реальним». Якщо будь-яке вимірювання, якому ви можете піддати мою лінійку, показує, що вона завдовжки 6 см, то вона є завдовжки 6 см. «Довжина»це не абстрактна величина, вона вимагає вимірювання. Оскільки вимірювання залежить від спостерігача, довжина також від нього залежить. Аби переконатися, що це можливо, а заодно висвітлити ще одну слизьку релятивістську пастку-22, розглянемо один із моїх найулюбленіших прикладів.
Припустімо, я маю автомобіль завдовжки 12 футів, а ви маєте гараж завглибшки 8 футів. Ясно, що моє авто у ваш гараж не влізе:
Проте з теорії відносності випливає, що, якщо я їду швидко, ваші вимірювання покажуть, що довжина моєї машини становить, скажімо, лише 6 футів, тож вона поміститься у ваш гараж, принаймні допоки перебуває в русі:
Проте розгляньмо ситуацію з мого боку. Для мене довжина мого авто становить 12 футів, а ваш гараж швидко рухається мені назустріч, і тепер згідно з моїми вимірюваннями його глибина становить не 8, а лише 4 фути:
Отже, моє авто точно не поміститься у ваш гараж.
То де правда? Очевидно, що моя машина не може одночасно перебувати в гаражі й поза ним. Чи може?
Спершу розгляньмо вашу точку зору й уявімо, що ви встановили попереду й позаду вашого гаража великі двері. Аби я не вбився під час заїзду в нього, ви робите таке: зачиняєте задні двері, але відчиняєте передні, щоб моя машина могла заїхати. Коли вона опиняється всередині, ви зачиняєте передні двері:
Але далі ви швидко відчиняєте задні двері, доки моя машина в них не врізалася, і я спокійно виїжджаю з другого боку гаража:
Отже, ви продемонстрували, що моя машина побувала всередині вашого гаража, і це дійсно так, адже вона була достатньо малою, щоб туди поміститися.
Проте згадаймо, що з моєї точки зору послідовність віддалених подій у часі може бути іншою. Ось що спостерігатиму я.
Я побачу, як ваш крихітний гараж прямує до мене, і я побачу, як ви відчиняєте передні двері якраз вчасно, щоб передня частина мого авто заїхала всередину.
Далі я побачу, як ви послужливо відчиняєте задні двері, не даючи мені в них врізатися:
Після цього й після того, як задня частина мого авто заїхала в гараж, я побачу, як ви зачиняєте передні двері гаража:
Для мене буде очевидним, що мій автомобіль ніколи не перебував усередині вашого гаража при обох зачинених дверях, адже це неможливо. Ваш гараж замалий.
«Реальність» кожного з нас ґрунтується винятково на тому, що ми здатні виміряти. У моїй системі відліку машина є більшою за гараж. У вашій системі відліку гараж є більшим за машину. Крапка. Річ у тім, що одночасно ми можемо перебувати лише в одному місці, і реальність, у якій ми перебуваємо, однозначна.
Проте висновки, які ми робимо щодо реального світу в інших місцях, ґрунтуються на віддалених вимірюваннях, які залежать від спостерігача.
Але плюси ретельного вимірювання цим не вичерпуються.
Нова реальність, що її відкрив Ейнштейн, якатак уже сталосяґрунтувалася на емпіричній коректності закону Галілея та видатному обєднанні електрики й магнетизму Максвелла, на перший погляд замінює собою всі до одного рудименти обєктивної реальності субєктивними вимірюваннями. Проте, як нагадує нам Платон, справа натурфілософакопати ще глибше.
Кажуть, що фортуна всміхається підготовленому розуму. У певному сенсі печера Платона підготувала наш розум до відносності Ейнштейна, проте по-справжньому довів цю справу до кінця колишній Ейнштейнів професор математики Герман Мінковський.
Мінковський був блискучим математиком і зрештою обійняв посаду в Геттінгенському університеті. Проте в Цюриху, де він був одним із професорів Ейнштейна, його заняття Альберт прогулював, оскільки в студентські роки майбутній Нобелівський лауреат напрочуд зневажливо ставився до важливості чистої математики. З часом він свою думку змінив.
Згадаймо, що вязні в Платоновій печері також робили висновок із тіней на стіні, що довжина вочевидь не має обєктивної сталості. В один момент часу тінь лінійки може виглядати так, маючи завдовжки 10 см:
а в іншийтак, завдовжки 6 см:
Я не випадково обрав приклад, аналогічний тому, що його використав під час обговорення відносності. Проте у випадку мешканців Платонової печери ми розуміли, що скорочення довжини відбувається через те, що мешканці печери бачать лише двовимірні тіні справжнього тривимірного обєкта. Якщо поглянути згори, легко побачити, що коротша тінь на стіні є результатом повороту лінійки під кутом до стіни:
І, як навчив нас інший грецький філософ, Піфагор, у такому вигляді довжина лінійки фіксована, а от поєднання проекції на стіну з лінією, перпендикулярною до стіни, завжди дає ту саму довжину, як показано нижче.
Отож маємо знамениту теорему Піфагора L2 = x2 + y2, яку учні вчать у школах, відколи там викладають геометрію. У тривимірному просторі вона має вигляд L2 = x2 + y2 + z2.
Через два роки після того, як Ейнштейн написав свою першу статтю про теорію відносності, Мінковський збагнув, що неочікувані наслідки сталості швидкості світла й відкриті Ейнштейном нові відношення між простором та часом потенційно можуть також свідчити про глибший взаємозвязок між ними. Знаючи, що фотографія, яку ми зазвичай уявляємо собі як двовимірне представлення тривимірного простору, насправді є зображенням, розтягнутим і в просторі, і в часі, Мінковський зробив висновок, що, можливо, спостерігачі, які рухаються один стосовно одного, спостерігають різні тривимірні зрізи чотиривимірного всесвіту, у якому простір та час є рівноправними.
Якщо повернутися до прикладу з лінійками у випадку відносності, коли лінійка рухомого спостерігача з точки зору іншого користувача буде коротшою, ніж у системі відліку, у якій вона перебуває в спокої; слід памятати, що для цього спостерігача лінійка також «розтягнута» у часіподії на її кінцях, одночасні з точки зору спостерігача в стані спокою щодо лінійки, не є одночасними для другого спостерігача.
Мінковський зрозумів, що цей та всі інші факти можна узгодити між собою, якщо розглядати різні тривимірні точки зору, що їх дослідив кожен спостерігач, як у деякому сенсі різні «повернуті» проекції чотиривимірного «простору-часу», де існує інваріантна чотиривимірна просторово-часова «довжина», однакова для всіх спостерігачів. Цей чотиривимірний простір, який ми нині звемо простором Мінковського, дещо відрізняється від свого тривимірного аналога тим, що час як четвертий вимір трактується трохи інакше за три виміри простору: x, y та z. Чотиривимірна «просторово-часова» довжина, яку можна позначити S, записується аналогічно до тривимірної довжини, позначеної вище L, не так:
S2 = x2 + y2 + z2 + t2,
а ось так:
S2 = x2 + y2 + z2t2.
Знак «мінус» перед t2 у визначенні просторово-часової довжини S надає простору Мінковського особливих характеристик, і саме через це наші різні точки зору на простір і час, коли ми рухаємося один стосовно одного, є не простими обертаннями, як у випадку Платонової печери, а чимось дещо складнішим.
Менше з тим, одним махом сама природа нашого всесвіту змінилася. Як поетично написав із цього приводу 1908 року Мінковський: «Віднині сам по собі простір та сам по собі час приречені перетворитися на лише тіні, і лише їхній своєрідний союз збереже незалежну реальність».
Таким чином, на перший погляд Ейнштейнова спеціальна теорія відносності робить фізичну реальність субєктивною та залежною від спостерігача, проте вживати слово відносність у такому сенсі неправильно. Натомість теорія відносності є теорією абсолютів. Вимірювання простору й часу можуть бути субєктивними, проте «просторово-часові» вимірюванняуніверсальні й абсолютні. Швидкість світла універсальна й абсолютна. А чотиривимірний простір Мінковськогоце поле, на якому відбувається гра природи.
Можливо, простіше буде зрозуміти всю глибину радикальної зміни точки зору, викликаної переоформленням Ейнштейнової теорії Мінковським, якщо розглянути реакцію самого Ейнштейна на картину Мінковського. Спершу Ейнштейн назвав її «надлишковою мудрованістю», даючи зрозуміти, що це просто химерна математика, позбавлена фізичної значимості. Невдовзі після цього він додатково підкреслив це, сказавши: «Відколи в теорію відносності вдерлися математики, я сам перестав її розуміти». Проте в остаточному підсумку, як це не раз ставалося в його житті, Ейнштейн змінив думку та визнав, що цей здогад може мати ключове значення для розуміння істинної природи простору й часу, і пізніше збудував свою загальну теорію відносності на підвалинах, які заклав Мінковський.
Було б дуже важко, якщо взагалі можливо, здогадатися, що Фарадеєві обертальні колеса та магніти врешті-решт приведуть до настільки ґрунтовного перегляду нашого розуміння простору й часу. Утім, заднім числом можна стверджувати, що ми мали принаймні запідозрити, що обєднання електрики й магнетизму може стати провісником світу, у якому рух відкриє нову, приховану реальність.
Повертаючись до Фарадея й Максвелла, одним із важливих відкриттів, з якого це все почалося, було те, що магніт діє на електричний заряд дивною силою. Замість штовхати заряд уперед чи назад, сила магніту завжди прикладена під прямими кутами до руху електричного заряду. Цю силу, нині відому під назвою сили Лоренца, на честь Гендріка Лоренца, фізика, який теж був близький до відкриття відносності,можна зобразити таким чином:
Заряд, який рухається між полюсами магніту, виштовхується вгору.
А тепер розглянемо, як усе виглядатиме з точки зору частинки. У її системі відліку магніт рухатиметься повз неї.
Проте за визначенням ми вважаємо, що на електрично заряджену частинку в стані спокою діють лише електричні сили. Отже, оскільки в поданій системі відліку частинка перебуває в спокої, силу, яка на рисунку штовхає її вгору, слід інтерпретувати як електричну силу.
Таким чином, магнетизм одного є електрикою іншого й поєднує їх рух. Тож насправді обєднання електрики й магнетизму відображає те, що однорідний відносний рух надає спостерігачам різні точки зору на реальність.
Рухпредмет, що його вперше дослідив Галілей, врешті-решт три століття по тому надав ключ до нової реальності, у якій обєднано не лише електрику й магнетизм, а також простір і час. Коли все лише починалося, такої саги ніхто не очікував.
У цьому й полягає краса найвидатнішої з коли-небудь розказаних оповідей.
Розділ 6Тіні реальності
І сталося, як вони все йшли та говорили, аж ось появився огняний віз та огняні коні, і розлучили їх одного від одного.
1908 року, після приголомшливого відкриття несподіваного прихованого звязку між простором і часом, можна було б подумати, що природі більше немає чим нас здивувати. Проте космосу начхати на наші відчуття. І світло ще раз надало ключа до дверей кролячої нори у світ, порівняно з яким пригоди Аліси здаються дитячими забавками.
Хоча звязки, які виявили Ейнштейн та Мінковський, можуть здатися химерними, їх, як я намагався продемонструвати, можна інтуїтивно зрозуміти, виходячи зі сталості швидкості світла. Значно менш інтуїтивним було наступне відкриття, яке полягало в тому, що в дуже малих масштабах природа поводиться таким чином, який людська інтуїція не в змозі навіть повною мірою усвідомити, оскільки ми не здатні безпосередньо сприймати цю поведінку.
Як сказав одного разу Річард Фейнман, ніхто не розуміє квантову механіку, якщо тлумачити розуміння як розробку конкретної фізичної картини, що справляє враження повністю інтуїтивної.
Навіть через багато років після відкриття правил квантової механіки ця дисципліна продовжує підносити сюрпризи. Приміром, 1952 року астрофізик Генбері Браун збудував прилад для вимірювання кутового розміру великих джерел радіохвиль у небі. Він працював настільки добре, що вони з колегою Річардом Твіссом спробували застосувати цю саму ідею для вимірювання оптичного світла від окремих зір для визначення їхнього кутового розміру. Багато фізиків стверджували, що їхній інструмент, названий інтерферометром інтенсивностей, не буде працювати. Вони були переконані, що квантова механіка це виключає.