Всё об искусственном интеллекте за 60 минут - Питер Дж. Бентли 2 стр.


Уже на нашем веку машины могут превзойти нас по общему уровню интеллектуального развития.

МАРВИН МИНСКИ (1961)

В отчете Консультативный комитет заключил, что машинный перевод хуже человеческого и к тому же значительно дороже. После публикации этого отчета Национальный исследовательский совет, уже потратив к тому моменту 20 миллионов долларов, прекратил финансирование исследований в области машинного перевода в США. Что касается исследования нейросетей, они тоже постепенно сходили на нет, поскольку ученые отчаянно пытались заставить простые нейронные сети делать что-то полезное. Последней каплей стала книга Марвина Мински и Сеймура Пейперта «Перцептроны», опубликованная в 1969 году, в которой были описаны многие ограничения модели простого нейрона. Это положило конец исследованиям нейронных сетей.

Однако вскоре все стало еще хуже. В 1972 году по заказу парламента Великобритании, пытавшегося оценить прогресс исследований в области искусственного интеллекта, математик сэр Джеймс Лайтхилл подготовил отчет. Выводы были неутешительными: «Большинство исследователей, начавших работать в этой области около десяти лет назад, признаются, что тогда они испытывали своего рода наивный оптимизм, который теперь считают неуместным успехи в создании роботов общих типов не привели к достижению грандиозных целей». Отчет вызвал резонанс по всему миру. Управление перспективных исследовательских проектов Министерства обороны США сократило финансирование работ, касающихся ИИ, поскольку осознало, что обещанные результаты в такой области, как распознавание речи, не достигаются. В Великобритании финансирование исследований ИИ прекратили во всех университетах кроме трех: Эссекского, Сассекского и Эдинбургского. Идея ИИ и создания интеллектуальных роботов была полностью дискредитирована. Так наступила первая зима ИИ.

Несмотря на нежелательность своей деятельности, несколько исследователей ИИ продолжали работу в течение следующего десятилетия. Имевшиеся к тому моменту наработки не канули в Лету; многие достижения стали частью массовых компьютерных технологий. В конце концов к 1980-м годам в области исследований ИИ наметился новый прорывэкспертные системы. Эти новые алгоритмы ИИ включили в себя знания людейэкспертов в различных системах, основанных на правилах,  и могли выполнять такие задачи, как идентификация неизвестных молекул или диагностика заболеваний. Для подобных целей разрабатывались новые языки ИИ, например Prolog и LISP, а для эффективной работы этих языков проектировались специализированные компьютеры. Вскоре экспертные системы были внедрены во многие отрасли промышленности и бизнес начал процветать. Так исследования ИИ снова получили финансирование.

Мы можем рассчитывать на создание компьютера с потенциалом, соответствующим потенциалу человеческого интеллекта, примерно к 2017 году.

ДЭВИД ВАЛЬЦ, пионер ИИ в области построения логических выводов (1988)

В Японии на создание компьютера пятого поколения выделили 850 миллионов долларов. Целью этого проекта стала разработка суперкомпьютеров, которые могли бы запускать программное обеспечение экспертных систем и выполнять такие сложные задачи, как поддержание разговоров и интерпретация изображений. К 1985 году на разработку отдельных систем в рамках ИИ было выделено более миллиарда долларов, а Управление перспективных исследовательских проектов потратило 100 миллионов долларов на финансирование 92 проектов в 60 учреждениях. Исследования ИИ возобновились, и вместе с ними вернулся ажиотаж.

Но продолжался очередной взлет недолго. Мощность обычных компьютеров быстро превысила мощность интеллектуальных систем, и компании, занимавшиеся аппаратным оборудованием для ИИ, обанкротились. Затем выяснилось, что экспертные системы крайне сложны в обслуживании и подвержены серьезным ошибкам при неправильном вводе данных. Обещанные возможности ИИ вновь не были реализованы. Промышленность отказалась от этой новой технологии, и финансирование опять прекратилось. Наступила вторая зима ИИ.

Возрождение

И снова, несмотря на то что тема ИИ оказалась не в чести, исследования продолжались. Однако поскольку в 1990-х годах даже сам термин «искусственный интеллект» ассоциировался с неудачей, его часто пытались замаскировать под интеллектуальные системы, машинное обучение, современные эвристические методы.

Достижения продолжались, но они «поглощались» другими технологиями. И вскоре началась тихая революция, принесшая с собой более продвинутую нечеткую логику (см. главу 9), новые, более мощные, типы нейронных сетей, более эффективные оптимизаторы и все более результативные методы машинного обучения. Робототехника тоже начала активно развиваться, особенно с появлением более легких и более емких батарей нового поколения. Облачные компьютеры позволили производить большой объем вычислений без существенных затрат, и каждый день генерировалось так много данных, что у ИИ было множество примеров для обучения. Поначалу медленно, но все смелее и решительнее ИИ и робототехника отвоевывали утраченные позиции. Снова росло всеобщее возбуждение, однако на этот раз его сопровождал страх.

К 2029 году компьютеры будут обладать интеллектом, сопоставимым по уровню с человеческим.

РЭЙМОНД КУРЦВЕЙЛ, изобретатель и футуролог (2017)

Мы не должны быть уверены в нашей способности постоянно удерживать суперинтеллектуального джина в бутылке.

НИК БОСТРОМ, руководитель Института будущего человечества в Оксфорде (2015)

Прошлый, 2019, год стал летом для исследований ИИ: тысячи ИИ-стартапов по всему миру продемонстрировали новые способы применения ИИ. Все крупные технологические компании (Apple, Microsoft, Google, Amazon, Weibo, Huawei, Samsung, Sony, IBMсписок кажется бесконечным) инвестировали десятки миллиардов долларов в исследования ИИ и робототехники. Впервые продукты на базе ИИ стали доступны широкой публике: домашние станции, распознающие голоса, телефоны, распознающие отпечатки пальцев и лица, камеры, распознающие улыбки, автомобили, в которых автоматизирован ряд водительских задач, роботы-пылесосы. Незримо ИИ помогает нам и еще сотнями различных способов: в медицинских сканерах, выявляющих болезни, в оптимизаторах, составляющих расписание курьеров, в автоматизированных системах контроля качества на фабриках, в системах обнаружения мошенничества, уведомляющих о подозрительных операциях и блокирующих карту, в мультиварках, готовящих идеальный рис. Даже если мы вновь решим не называть ее ИИ в будущем, эта технология слишком широко распространилась, чтобы исчезнуть.

Большинство руководителей понимают, что искусственному интеллекту под силу изменить почти все аспекты ведения бизнеса. Благодаря этой технологии к 2030 году мировая экономика может вырасти на 15,7 триллиона долларов.

PRICEWATERHOUSECOOPERS (2019)

За всю историю ИИ никогда еще не было так много ожиданий, исследователей, денег и истерии, связанных с ним, как сейчас. Несмотря на все взлеты и падения его популярности, прогресс в исследованиях ИИ никогда не прекращался. Сегодняшний деньэто кульминация тысяч лет усилий, вложенных в одни из самых удивительных технологий, что когда-либо были созданы людьми. Если и нужно определять золотой век ИИ, то он, несомненно, сейчас. Потрясающие интеллектуальные технологии не просто помогают намони раскрывают саму суть интеллекта и в то же время ставят перед нами важные философские вопросы о том, что мы можем позволить этим технологиям делать. Наше будущее тесно связано с умными устройствами, и мы должны уметь ориентироваться на минном поле рекламной шумихи и неуместных ожиданий, одновременно учась принимать ИИ и роботов в нашу жизнь.

Успешное создание ИИ станет важнейшим событием в истории человечества. К сожалению, оно может оказаться последним, если мы не научимся избегать рисков.

СТИВЕН ХОКИНГ (2014)

Каждая глава этой книги представит вам наиболее необычные изобретения в области ИИ на настоящий момент и расскажет, что они могут значить для нашего будущего. Добро пожаловать в мир искусственного интеллекта и робототехники!

02. Выбор верного пути

Я никогда не предполагаю. Эта возмутительная привычка разрушительна для логики.

АРТУР КОНАН ДОЙЛ

Однако часы для интуиционистов,

Когда доказательства еще не будучи моими,

Или правданекая часть математики,

И ее элемент утверждал: и было так.

Он был рожден из

Аксиом-схем, коих я

Не боюсь следствий

Одно из понятий началаглаз. Когда

Это математика вечна.

Конечно, перед вами не величайшая поэзия в мире, но этот небольшой набор из катрена, хайку и двустишия был создан ИИ, который пытался выразить идеи о логике в духе шекспировского сонета, за доли секунды. Читая такие стихи, порой можно обнаружить более глубокий смысл в, казалось бы, несвязанных словах. Каким-то образом ИИ удается уловить что-то, что заставляет нас задаваться вопросом, передается ли сообщение.

К сожалению, в этом случае смысл отсутствует. Стихи генерировались компьютером в соответствии с набором правил, определяющих структуру каждой поэтической формы. (Например, хайку состоит из трех нерифмованных строк, в свою очередь состоящих из пяти, семи и пяти слогов, а двустишиеиз двух строк, которые могут быть как рифмованными, так и нерифмованными). Слова были выбраны случайно из исходного текста (нескольких абзацев, включавших общую информацию о логике, сонет Шекспира и фрагмент из статьи фон Неймана о логике 1927 года). Используя разные исходные тексты и наборы правил, ИИ сможет создавать стихи о чем угодно и в любом стиле, который вы зададите.

Символический ИИ

При символьной обработке слова́ рассматриваются как связанные друг с другом в соответствии с определенным набором правил символы. Слова становятся объектами, которыми можно управлять, трансформируя таким же образом, каким мы трансформируем числа в соответствии с правилами математики. Символический ИИ позволяет компьютерам мыслить словами.

Пожалуй, неудивительно, что символический ИИ стал одной из первых и наиболее успешных форм ИИ, поскольку был основан на новых представлениях о логике, развитых несколькими десятилетиями ранее. К началу XX века Бертран Рассел, Курт Гедель и Давид Гильберт достигли пределов математики, пытаясь понять, доказуемо ли абсолютно все, или же действительно существуют некие недоказуемые утверждения, которые, однако, можно выразить математически. Эти исследователи показали, что вся математика может быть сведена к логике.

Мысль была неосязаемой и невыразимой, пока современная формальная логика не стала интерпретировать ее как манипуляцию формальными символами.

АЛЛЕН НЬЮЭЛЛ (1976)

Логикаочень мощный инструмент представления фактов. Все, что выражено логически, должно быть или истинным, или ложным, например: идет дождьправда; дует ветерложь. Логические операции позволяют нам формулировать более сложные идеи: если «идет дождь»  правда, а «дует ветер»  ложь, то «взять зонтик»  правда. Это логическое высказывание также может быть представлено в виде таблицы истинности:

Когда мы доказываем что-то в математике, мы показываем, что логические предположения гарантируют вывод. Математика построена на таких доказательствах. Поэтому, если у нас есть утверждения «все люди смертны» и «Сократчеловек», мы можем доказать, что «Сократ смертен».

Предикатная логика, более сложный и широко используемый тип логики, даже допускает превращение обычных предложений в своего рода логические обозначения (также известные как формальные логические высказывания).

Родоначальникам символического ИИ логика представлялась настолько всемогущей, что они считали, будто символическая логикаэто все, что нужно для интеллекта.

Это убеждение было основано на идее, что человеческий разум лишь манипулирует символами. Исследователи утверждали, что наши представления об окружающем мире закодированы в мозге в виде символов. Идея стула и подушки может быть заключена в символах «стул» и «подушка» и абстрактных правилах, таких как «подушка может лежать на стуле» и «стул не находится на подушке».

ПАРАДОКС РАССЕЛА В ПРЕДИКАТНОЙ ЛОГИКЕ

Рассмотрим парадокс математика и философа Бертрана Рассела: «В некоей деревне живет брадобрей, который бреет всех жителей деревни, которые не бреются сами, и только их». Это парадокс, поскольку, если человек бреется сам, он не может брить себя в соответствии с правилом. Но если он не бреется сам, то должен брить себя согласно этому же правилу. В виде логического выражения это выглядит так:

Без паники! Если перевести на обычный язык, получится: «Существует x, являющийся человеком, и множество y, где yчеловек, x бреет y тогда и только тогда, когда y не бреет y». Это полезно, так как этот вид предикатной логики позволяет строить доказательства. В этом случае можно выявить парадокс, спросив: «Бреет ли брадобрей сам себя?» Или, в логическом выражении, что получится, если x = y? Заменим x на y, и в результате «бреет (x, x)» и обратное утверждение «¬бреет (x, x)» будут истинными. Другими словами, человек должен брить сам себя и он не может брить сам себя одновременноэто парадокс. (Используя его, Рассел доказал, что математика неполнато есть в ней невозможно доказать все).

Китайская комната

Однако некоторые философы не соглашались с подобным подходом. Они считали, что манипулирование символами кардинально отличается от действительного понимания их значения. Джон Серл, один из таких философов, тактично возразил оппонентам в форме рассказа о китайской комнате. Суть его в следующем. Человек, не знающий китайский язык, находится в комнате, куда через специальное отверстие ему передают листы бумаги с вопросами, написанными китайскими иероглифами. У человека есть четкая инструкция, в которой говорится, каким образом можно получить ответ на поставленный вопрос. В результате человек находит ответ, записывает его на другой лист и возвращает.

У системы физических символов есть необходимые и достаточные ресурсы для решения общих интеллектуальных задач.

АЛЛЕН НЬЮЭЛЛ И ГЕРБЕРТ САЙМОН (1976)

Казалось бы, человеку в комнате можно задать любой вопрос и получить на него разумный ответ. Но на самом деле в ответе не будет истинного понимания. Человек всегда следует инструкции, используя символы для поиска других символов. Он никогда не понимает ни вопроса, ни ответа, потому как не знает ни одного китайского иероглифа.

Серл утверждал, что именно это и делает ИИ, когда выполняет обработку символов. Он манипулирует ими в соответствии с установленными правилами, но никогда не понимает, что эти символы и правила значат. На вопрос «какого цвета спелый банан?» ИИ, вероятно, сумеет найти ответ и «сказать»: «желтого». Кроме того, он сможет последовать еще ряду правил, чтобы сделать ответ более человечным: «Желтого, конечно. Вы думаете, что я глупый?». ИИ не знает, что означает «желтый». Он не видит связи между символом «желтый» и внешним миром, поскольку не знает, что такое внешний мир, и ИИ никогда не удастся получить какой-либо жизненный опыт. Такой ИИ не обладает интенциональностьюспособностью принимать решение на основе собственного понимания. Поэтому Серл утверждал, что ИИ просто симулирует интеллект. «Формальные символьные манипуляции сами по себе не обладают интенциональностью; они совершенно бессмысленны,  писал он.  Эта интенциональность, которой, как считается, обладают компьютеры, находится исключительно в умах тех, кто эти компьютеры программирует, использует, вводит в них данные и интерпретирует данные на выходе».

Ни одна логика не является достаточно сильной, чтобы поддерживать общую конструкцию человеческого знания.

ЖАН ПИАЖЕ, психолог

Даже если такой ИИ пройдет тест Тьюринга, это не будет иметь значения. ИИэто механизм, разработанный, чтобы обманывать нас, подобно античным родосским автоматонам. ИИ слаб, а создание так называемого сильного ИИ, то есть обладающего реальным интеллектом, может оказаться непосильной задачей.

Назад Дальше