Таким образом, перекос мнений, характерный для парадокса дружбы, наблюдается и далеко за пределами дружеского круга. Дружеская предвзятостьвсего лишь отдельный случай искаженного отбора: наши наблюдения часто опираются на необъективную выборку, и все обусловлено субъективным выбором. Мы слишком часто летаем теми рейсами, на которые заказано больше всего билетов, обедаем в самых популярных ресторанах, ездим по самым оживленным дорогам, да еще и в часы пик, посещаем парки и аттракционы в те часы, когда там больше всего народу, и ходим на концерты и в кино, когда залы переполнены. Это и порождает перекос в наших мнениях, а также в нашем восприятии общественных норм, причем зачастую мы сами не понимаем, почему это происходит. По словам Шейна Фредерика из исследования 2012 года, посвященного нашей привычке переоценивать чужую готовность раскошеливаться, клиенты в очередях к Starbucks куда заметнее, чем те люди, которые тихонько сидят по офисам, потому что не желают выкладывать 4 доллара за стакан кофе.
Сравнения, сравнения
Если как следует помучить факты, природа обязательно сознается.
Я хочу, чтобы меня запомнили как парня, который не только набирает лучшие очки, но и во всем побеждает.
Кто был лучшим баскетболистом всех временУилт Чемберлен или Майкл Джордан? Возможно, вы назовете Леброна Джеймса. Я вырос в Большом Чикаго, и потому у меня есть свой ответ на подобные вопросы, но речь сейчас о другом: сравнение проводится между превосходными атлетами, которые проявляли себя в игре очень по-разному.
Есть много различных статистических показателей, которые можно использовать при кратком описании их спортивных карьер. Например, Джордан и Чемберлен поразительно похожи в нескольких пунктах: каждый из них набирал в среднем по 30,1 очка за регулярный сезон игр на протяжении всей карьеры, так что каждый набрал немного больше тридцати тысяч очков за все сезоны (Джордан32 292 очка, а Чемберлен31 419), и каждый получил несколько наград Самый ценный игрок (Джордан5, а Чемберлен4). Однако в других пунктах между ними наблюдались различия: Майкл Джордан привел свою команду к большему числу побед на чемпионате НБА (к шестипротив двух побед Уилта), зато у Уилта Чемберлена было колоссальное число подборов за матч (22,9 против 6,2 у Майкла).
Есть параметры, по которым отличились другие игроки. Рекордные трехочковые броски Стива Карриэто что-то небывалое. Длительная карьера Карима Абдул-Джаббара, на протяжении которой он сохраняет высокий уровень игры, не знает себе равных. Карим играл в течение двадцати лет и набрал в общей сложности более сорока тысяч очков, сыграл в девятнадцати матчах всех звезд, а до этого оставался непревзойденным баскетболистом на уровне колледжей. Безусловное лидерство Леброна Джеймса было очевидно с тех самых пор, как он, будучи юниором-старшеклассником, появился на обложке Sports Illustrated. Но если мы действительно хотим измерить многосторонние достижения в баскетболе, тогда нам нужно учитывать трипл-даблы, или тройные дубли, то есть набор одним игроком в течение матча всех трех показателейочков, подборов и передач, которые выражались бы двузначным числом, то есть не менее десяти. А затем стоит вспомнить Оскара Робертсона, который за весь сезон набрал в среднем трипл-дабл (по этому параметру его лишь недавно нагнал Расселл Уэстбрук) и сыграл столько матчей с трипл-даблами, что в этом с ним никто не мог сравнитьсядаже Мэджик Джонсон.
Так что не имеет смысла затевать споры о баскетбольном мастерстве в духе Медведи против Быков, а следует подчеркнуть несколько моментов: статистика содержит полезную информацию в сжатом виде, разные статистические показатели отражают разные явления, и даже длинный статистический перечень не сможет передать все разнообразие нюансов описываемых явлений.
Наша жизнь была бы намного проще, если бы определение того или иного явления можно было всегда свести к какому-то одному параметру. Но наша жизнь очень интересна отчасти потому, что подобный одномерный подход невозможен для описания многих вещей, понять которые как раз очень важно: любые списки, расставляющие имена или явления по степени важности, одновременно и вызывают споры, и сбивают с толку. Как можно сравнивать музыкальные новации Гайдна, Штрауса и Стравинского? Иливклад в борьбу за права человека Элеоноры Рузвельт, Гарриет Бичер-Стоу и Гарриет Табмен? Кто более яркий футболистЛионель Месси или Диего Марадона? Можно ли вообще сравнивать искусство Пабло Пикассо с искусством Леонардо да Винчи? Или легче сравнивать картины Пикассо с картинами Анри Матиссаи не только потому, что Пикассо и Матисс были современниками, но и потому, что они были соперниками? Многие, наверное, возразят, что подобные сравнения бесплодны и бессмысленны. Однако они заставляют нас задумываться о разных углах, под которыми можно рассматривать достижения этих людей, и о том, почему из-за этих достижений менялись правила игры. Глядя на разные показатели баскетбольной статистики, можно увидеть, что выделяются разные игроки и каждый замечателен по-своему. Точно так же, глядя на разные показатели, характеризующие положения людей в сети, можно заметить, что наиболее центральными всякий раз будут выступать разные люди. Одни люди обладают ярко выраженной центральностью по одним параметрам, но не по другим, а какие именно сетевые параметры наиболее важны в том или ином случае, зависит от контекста, точно так же, как ваше решениепринимать ли в команду лучшего игрока, забивающего мяч, или лучшего защитниказависело бы от конкретных обстоятельств.
Мы уже видели, что один критерий определения центральностицентральности по степенипомогает нам понять, почему люди, наделенные наиболее высокой степенью связей в сети, в итоге оказывают наибольшее влияние на остальных. Это первый сетевой эффект. Центральность по степени, как самая основная и очевидная мера сетевой центральности, сродни среднему количеству набранных очков за матч в примере с баскетболом. Однако, чтобы дополнить эту аналогию, следует сказать, что разные люди обладают разными сильными сторонами с точки зрения их положения в сети, и таким образом, ответ на вопрос, кто же из них центральнее, будет меняться в зависимости от того, как мы будем формулировать вопрос. Вспомним о том, что Уилтмастер подборов, Майкл лучше всех приводил свою команду к победам на чемпионатах, а Стив Карри по-новому выстраивал защиту. Если сравнивать узлы (например, людей) в сети, исходя лишь из их центральности по степени, можно совершенно упустить из виду какие-то из наиболее существенных качеств, говорящих о власти и влиянии. Поэтому давайте рассмотрим некоторые другие понятия.
Важно, кого вы знаете: как находить иголки в стогу сена
Налаживание связейчепуха. Лучше иметь друзей.
Google мог бы вовсе не существовать, если бы по счастливой случайности Сергей Брин не взялся провести Ларри Пейджа по кампусу Стэнфордского университета. Это было в 1995 году, когда Ларри задумался о поступлении в стэнфордскую докторантуру. Родители Сергея эмигрировали в США из СССР в конце 1970-х годов. Сергей, давно увлекавшийся математикой и компьютерным программированием, приехал в Стэнфорд изучать компьютерные науки. Ларри Пейдж, разделявший его интерес к компьютерам, вспоминал, что в детстве зачитывался книгами и журналами, а еще любил разбирать дома всякие штуки, чтобы понять, как они устроены. Как волевые личности, Сергей и Ларри нередко спорили, но общность интересов и родство умов заставили их крепко сдружиться. И, что для нас важнее, обоих все больше интересовало устройство Всемирной паутины.
В 1996 году Сергей и Ларри уже вместе разрабатывали будущую поисковую машину для интернета. В общежитской комнате Ларри они поставили несколько компьютеров, которые самостоятельно собрали из найденных там и сям деталей, а комнату Сергея превратили в офис, где можно было продумывать идеи и испытывать программы. В работе, которую Сергей и Ларри написали сообща еще студентами, рассказывается о том, что в конце 1990-х Всемирная паутина разрасталась так быстро, что поисковые машины не справлялись со своей задачей. Одна из первых машинразработанная в 1994 году World Wide Web Wormиндексировала лишь чуть больше 100 тысяч страниц. В 1997 году другая поисковая система, AltaVista, хвасталась тем, что обрабатывает десятки миллионов запросов в день, тогда как в Паутине можно разыскивать и индексировать уже сотни миллионов страниц. Из-за такого огромного количества страниц, нуждавшихся в индексации, пользователь просто не мог найти то, что искал. Говоря словами Брина и Пейджа, в ноябре 1997 года лишь одна из четырех главных коммерческих поисковых машин находит сама себя (показывает собственную страницу поиска в числе первых десяти результатов в ответ на запрос с ее собственным именем).
Так как же находятся нужные иголки в таком необозримом стогу сена? Есть некоторые очевидные идеи, помогающие понять, как можно выявить нужные пользователю веб-страницы, по ключевым словам, которые он вводит в строку поиска. Но те же самые ключевые слова содержат бесчисленные страницы. Если искомые ключевые слова часто появляются на какой-то странице, это еще не значит, что именно их разыскивает большинство пользователей. Возможно, здесь полезно свернуть с основной дорожки и приглядеться к содержанию различных страниц. Было испытано множество вариаций этой темы, но все равно, похоже, ничего не получалось. Тут уж легко было сдаться и решить, что Паутина слишком разрослась и индексирование страниц и любая осмысленная навигация по нимзадача в принципе непосильная.
Прорыв, который совершили Брин и Пейдж, произошел благодаря их интересу к сетевому устройству Паутины: она содержит уйму полезной информации, ведь такое устройство не случайно. Одни веб-страницы связаны с другими веб-страницами, которые имеют для них важность. Так как же Брин и Пейдж поняли и использовали эту информацию? Главная догадка заключалась в том, что лучший способ выявить ту страницу, которую пользователь захочет увидеть в первую очередь, это посмотреть на те веб-страницы, откуда тянутся связи к этой самой веб-странице. Если к какой-либо странице тянутся связи от других важных веб-страниц, значит, скорее всего, это важная страница. Нельзя судить о странице просто по числу ее связей с другими страницами: вопрос заключается в том, связана ли она с теми страницами, которые сами имеют множество связей. В очень многих областях гораздо важнее иметь друзей с хорошими связями, чем просто иметь много друзей.
Это как бы круговое определение: страница важна, потому что связана с другими важными страницами, которые, в свой черед, оказываются важными, потому что связаны с важными страницами. Несмотря на этот круговой характер, решение получается красивоеи чрезвычайно полезное для сетевой среды.
Предположим, что нам нужно распространить слух или какую-то информацию, которая, как мы полагаем, будет разноситься путем сарафанного радио. Чтобы понять, почему здесь не годится прямолинейный принцип популярности, посмотрите на сеть, изображенную на рисунке 2.5. Даже беглого взгляда на нее достаточно, чтобы заметить, что положения Нэнси и Уоррена сильно разнятся, хотя оба они имеют по двое друзей. Различие состоит в том, что их друзья обладают разным качеством связей, а потому и сами они занимают разное положение в сети. У каждого из друзей Уоррена лишь по два друга, тогда как у друзей Нэнсисемеро и шестеро. Таким образом, пускай Уоррен и Нэнси занимают одинаковое положение с точки зрения степени (то есть по количеству друзей), у друзей Нэнси степени выше, чем у друзей Уоррена.
Рис. 2.5. Два человека, Нэнси и Уоррен, обладают степенью 2. Однако они различаются количеством связей их друзейи потому их абсолютные положения в сети различны.
На этом можно было бы остановиться: вместо того чтобы просто считать друзей, мы могли бы считать, сколько дополнительных друзей приводит за собой каждый из этих друзей, иными словами, подсчитывать друзей друзейназовем их друзьями второй степени. Для начала хорошо было бы не ограничиваться подсчетом непосредственных друзей, а считать еще и их друзей, тогда сразу же видно, что у Нэнси больше возможностей для распространения информации, чем у Уоррена. Но зачем останавливаться на этом? Почему не учесть еще и друзей третьей степени? Пускай дружба Нэнси с Эллой и не столь плодотворна, если иметь в виду наличие друзей третьей степени, зато ее дружба с Майлсом ведет к еще большему числу связей. Удалившись от Нэнси на три шага, мы уже охватим всех, кроме Уоррена. Отойдя же на три шага от Уоррена, мы насчитаем дополнительно всего пятерых человек, тогда как, удаляясь от Нэнси, мы насчитали шестнадцать человек. Таким образом, Нэнсигораздо более перспективный кандидат для распространения информации, чем Уоррен, хотя оба они обладают одинаковой степенью.
Как же выявлять эти качества в большой сети, где можно продолжать такой подсчет до бесконечности? Существуют различные способы, но лучше я опишу самую суть задачи. Давайте начнем с того, что просто учтем количество друзей первой степени (непосредственных). Итак, как мы видим из рисунка 2.5, и Нэнси, и Уоррен получат по 2 балла, поскольку у каждого из нихпо два друга. Далее, учтем друзей второй степени. Но должны ли мы наделять их таким же значением, что и друзей первой степени? Например, если мы представим себе, что информация начнет распространяться от Нэнси, то, вероятнее всего, она перейдет от Нэнси к Майлсу, затем к кому-нибудь из друзей Майлса, поскольку она должна вначале перейти от Нэнси к Майлсу, а затем дальшеуже от Майлса. Пожалуй, менее вероятно, что ей понадобится для распространения два шага, а не один шаг, скажем, в два раза менее вероятно. Так что пока давайте присвоим другу друга значение вдвое меньшее, чем непосредственному другу. У Нэнси одиннадцать друзей второй степени, поэтому присваиваем ей 11/2 баллов, учитывая количество друзей ее друзей. А у Уоррена имеется только один друг второй степени, поэтому он получает 1/2. Итак, у Нэнси пока что 7,5 балла, если считать ее друзей первой и второй степени, а у Уорренатолько 2,5. Далее мы переходим к подсчету друзей третьей степени: у Нэнси их трое, а у Уорренадвое. Опять-таки присвоим новым друзьям значение вдвое меньшее по сравнению с предыдущим уровнем, то есть по 1/4. Таким образом, к уже набранным очкам Нэнси прибавится еще 3/4, а к прежним очкам Уоррена2/4, после чего общее число баллов у Нэнси уже достигло 8,25, а у Уоррена оно выросло до трех. Продолжая подсчет таким способом, мы сможем количественно оценить, насколько охват людей в сети у Нэнси больше, чем у Уоррена.
Относительное сравнение Нэнси с Уорреном позволяет разрешить и другой вопрос. Давайте условимся, что центральность каждого из них пропорциональна сумме центральностей их друзей. Этот подсчет будет подобен тому, что уже проделан нами ранее. Тем самым Нэнси получит некоторую долю очков Эллы и Майлсаиз-за того, что будет учтена некоторая доля очков их друзей, и так далее. Эти повторные операции будут подобными, потому что Элла и Майлс получают очки от своих друзей, которые приходятся друзьями второй степени Нэнси, а те очки получены от их друзей, которые приходятся Нэнси друзьями третьей степени, и так далее.
По счастью, система уравнений такого типакогда центральность каждого человека пропорциональна сумме центральностей его друзейвполне естественная и легкорешаемая математическая задача. Она появилась благодаря ряду научных работ известнейших математиков, живших с XVIII по ХХ век: это Эйлер, Лагранж, Коши, Фурье, Лаплас, Вейерштрасс, Шварц, Пуанкаре, фон Мизес и Гилберт. Гилберт назвал решения подобных задач айген-векторами, или собственными векторами, и это общепринятое современное название. Неудивительно, что собственные вектора фигурируют во всевозможных областях, от квантовой механики (уравнение Шрёдингера) до алгоритма eigenface, содержащего основные строительные блоки для программ распознавания лиц. Решая задачу собственного вектора в нашем примере, мы приходим к ответу: количество баллов у Нэнси приблизительно в 3 раза больше, чем у Уоррена, что мы и видим на рисунке 2.6.
Рис. 2.6. Центральности по собственному вектору для каждого узла (человека). У Нэнси почти в 3 раза больше баллов, чем у Уоррена, хотя у обоих имеется одинаковое количество связей. Больше всего баллов у Майлса, хотя у Эллы наибольшая центральность по степени.
Инновация Брина и Пейджа заключалась в том, чтобы выстраивать веб-страницы согласно алгоритму, который они назвали PageRank. Он имеет прямое отношение к тому, что мы описали выше, и к вычислению собственного вектора. Правда, Брин и Пейдж не собирались распространять слухи по сети, но перед ними стояла сходная итеративная задачатак называемая задача случайного пользователя. Интернет-пользователь начинает с какой-то одной страницы, а затем случайным образом переходит оттуда по ссылке на другую страницу, причем он может с одинаковой вероятностью выбрать любую из ссылок. Затем все повторяетсяпользователь таким же случайным образом блуждает по Сети. Со временем, если мы вычислим относительное количество раз, которое пользователь посещает каждую страницу, мы получим собственный вектор. В этом случае баллы, которые присваиваются на каждом этапе, пропорциональны количеству ссылок, имеющихся на каждой странице.