Вирусы. Драйверы эволюции. Друзья или враги? - Кордингли Майкл 7 стр.


Лизогения также обеспечивает клетку-хозяина и все ее дочерние клетки, имеющие тот же генетический материал, иммунитетом против инфицирования (и потенциального лизиса) близкородственными штаммами фагов. Бактерии разных генетических линийне важно, представители они разных видов или сестринские, не являющиеся лизогенами,  не обладают таким иммунитетом. Такие бактерии могут быть непосредственными конкурентами в борьбе за одну и ту же экологическую нишу в кишечнике. В этой ситуации спонтанная индукция фагов в лизогенной популяции может вызвать эпидемию в штамме не имеющей иммунитета бактерии (De Paepe et al., 2014). Здесь фаг действует как эффективное биологическое оружие, поражающее микробы, соперничающие за обладание одной экологической нишей. Лизогенная популяция имеет в этой ситуации несомненное преимущество. «Смерть от индукции» одной бактерии может быть благом для популяции как целого и обусловить успех репликации ее уникального генетического материала.

Химическая война

Носоглотка человекаэто еще одна экологическая ниша, где сосуществуют и борются за преобладание бактерии-комменсалы. Обычно носоглотку колонизируют такие бактерии, как Streptococcus pneumoniae и Staphylococcus aureus, при этом носоглотка может служить источником передачи этих бактерий в другие анатомические структуры или другим людям. Много лет назад было установлено, что стрептококки пневмонии и золотистые стафилококки конкурируют за носоглотку. Эпидемиологи, бравшие мазки из зева здоровых детей, обнаруживали, что если высевался стрептококк пневмонии, то снижались шансы высеять золотистый стафилококк. С другой стороны, золотистый стафилококк часто обнаруживается у детей, у которых в носоглотке мало стрептококка пневмонии (Regev-Yochai et al., 2004; Bogaert et al., 2004). Вскоре было показано, что стрептококк пневмонии использует химическое оружие, для того чтобы победить конкурента (Park, Nizet, Liu, 2008; Regev-Yochai, Trzcinski, Thompson, 2006). Стрептококк высвобождает в среду химическое соединениеперекись водорода, хорошо известное дезинфицирующее вещество. Оставалось загадкой, почему данный уровень перекиси водорода не приносит вреда самому стрептококку, но убивает конкурирующих с ним стафилококков. Однако в 2009 году ученым из Нью-Йоркского и одного испанского университета удалось найти ответ на этот таинственный вопрос (Selva et al., 2009). Перекись водорода и опасные продукты ее реакций вызывают повреждение ДНК и порождают стрессовый SOS-ответ бактериальной клетки (этот ответ мы обсуждали выше в данной главе). Стрептококк пневмонии выработал механизмы, позволяющие выдерживать воздействие данной концентрации перекиси водорода, и, несмотря на повреждение ДНК, SOS-реакция у стрептококка не запускается. Напротив, у стафилококков, подвергшихся воздействию перекиси водорода, происходит повреждение ДНК и запускается SOS-реакция. Следствием является активация механизмов репарации ДНК. Эти изменения улавливаются резидентными профагами стафилококков, которые запрограммированы на индукцию и вступают в литический репликативный цикл. В результате происходит лизис стафилококковых клеток вследствие индукции профагов, что, в свою очередь, приводит к гибели стафилококков, прекращению конкурентной борьбы со стрептококками и победе последних (Selva et al., 2009).

Известно, что стафилококки содержат множество индуцибельных профагов, и индукция этих профагов является ядовитой пилюлей не только для индивидуальной клетки, но и для всей популяции. Эти выводы были подтверждены изящными экспериментами Сельвы и его коллег. С помощью генетических манипуляций они создали нелизогенные штаммы золотистого стафилококка, в хромосомах которых не было профагов, готовых к индукции по сигналу стресса. Эти бактериальные клетки оказались устойчивыми к перекиси водорода в концентрациях, которые убивали лизогенные штаммы, а значит, они были устойчивы и к химическому оружию стрептококков пневмонии. Конечно, в природе у подавляющего большинства золотистых стафилококков в хромосомах есть профаги, которые дают своим хозяевам какие-то конкурентные преимущества в отношении тех же стрептококков пневмонии. Такой удаленный контроль индукции профагов может быть широко распространенным феноменом, определяющим состав сложных бактериальных сообществ, которые сосуществуют с многоклеточными организмами и обитают в окружающей среде.

Эти работы только начинают проливать свет на то глубокое влияние, какое фаги оказывают на живые клетки, организмы и целые экосистемы. Резервуар генетической информации в пуле генов фагов, или в метагеноме,  это источник генетического разнообразия микробов и адаптивной эволюции. Легкость, с которой гены перемещаются между фагами и между бактериями, по большей части путем трансдукции, проливает свет на филогенетическую классификацию не только вирусов, но и их хозяев. Я вырос на доктрине о древе жизни с расходящимися, независимо развивающимися ветвями. Вероятно, это верное отражение эволюции высших форм жизни. Для царств бактерий и простейших, а также для вирусов наибольшую роль в эволюции и видообразовании сыграли боковые горизонтальные перемещения генетической информации. Некоторые ученые предполагают, что идея «вида» в мире микроорганизмов лишена смысла, если ее прикладывать к популяциям бактерий и вирусов, изучаемых методами сравнительной геномики. Разнообразие видов и штаммов бактерий объясняют неравномерным приобретением независимо развившейся генетической информации. Фаги играли главную роль в создании этого генетического плавильного котла. Фаги облегчают осуществление гигантского эволюционного потенциала микробного метагенома, и именно за их счет эволюция может проявлять свою невероятную изобретательность.

Глава 3Усугубление бактериальных болезней фагами

Фаги играют центральную роль в наших глобальных экосистемах, влияя на движение биомассы в пищевых цепях и стимулируя разнообразие и эволюционное развитие своих многочисленных микробных хозяев. Однако фаги инфицируют также и бактерии, обитающие в многоклеточных организмах. В 1930 году Феликс дЭрелль писал, что «действие и противодействие осуществляется не только между этими двумя существами, человеком и бактерией, ибо в столкновение вмешивается и бактериофаг, третье живое существо, и поэтому в уравнение надо ввести третью переменную» (DHerelle, Smith, 1930). Здесь я познакомлю вас с тем, как фаги, инфицирующие микробы, ускользнули от внимания ученых, будучи, на самом деле, активными действующими лицами в драме инфекционных заболеваний.

Если вы зайдете на английское церковное кладбище, посмотрите надписи на могилах, относящихся к началу или середине девятнадцатого века, как современный человек, вы удивитесь множеству детских могил. Под теми камнями похоронены дети, ставшие жертвами инфекционных заболеваний. Детская смертность в те времена была необычайно высока, а эпидемии инфекционных болезней, несомненно, провоцировались недостаточным питанием и плохими жилищными условиями. Помимо чумы, тифа и холеры, скарлатина зачастую уносила жизни всех детей в семье. ДЭрелль, когда говорил о треугольнике взаимодействия человека, бактерии и бактериофага, имел в виду двух из этих убийцхолеру и скарлатину. Эти болезни суть порождения микробных вирусов. ДЭрелль писал вышеприведенные слова в 1930 году, всего через несколько лет после того, как Фробишер и Браун (1927) сообщили о выделении фильтрующегося агента из скарлатинозных штаммов гемолитического стрептококка, бактериивозбудителя скарлатины. Действующее начало, которое они выделили, могло передавать способность к продукции эритрогенного токсина, которая является отличительным признаком болезнетворной бактерии, штаммам стрептококка, которые сами по себе не вызывали скарлатину. Это свойство сохранялось у потомков обработанных выделенным агентом клеток. Авторы, сами того не зная, описали феномен генной трансдукции и конверсии умеренного фага. Инфицирование фагом и лизогенизация превращает невинный стрептококк в патогенную бактерию. Другими словами, штаммы стрептококков, вызывавшие скарлатину, делали это, потому что были инфицированы фагом-лизогеном. Профаг становился частью наследуемого бактериального геномапроисходила конверсия фага.

Когда английский врач Томас Сайденгем в 1675 году впервые описал скарлатину, он охарактеризовал ее как «болезнь, поражающую всю семью сразу, а в особенности детей. Больные ощущают судороги и озноб, как и при других лихорадках. Симптомы, однако, выражены довольно умеренно; но очень скоро вся кожа покрывается мелкими красными пятнами, более плотными, чем при кори, а также более широкими, более красными и менее единообразными. Сыпь держится три-пять дней, а потом исчезает. Поверхностный слой кожи отшелушивается, и отрубевидные чешуйки остаются лежать на поверхности, как овсяные хлопья».

Это описание характерно для легкого течения болезни; это наблюдение не соответствует опустошительным эпидемиям скарлатины, которые бушевали в Европе в девятнадцатом веке. По тяжести это заболевание уместно сравнивали с тифом и чумойсмертельными инфекциями. Эта трансформация заболевания, его превращение в убийцу, сменявшееся периодическими вспышками более мягкой формы, некоторое время мешало эпидемиологическому пониманию скарлатины. Однако сегодня, вооруженные знанием о молекулярно-генетических механизмах, лежащих в основе приобретенной патогенности стрептококковых штаммов, ученые могут дать связное объяснение вариабельности течения ежегодных эпидемий скарлатины. Теперь мы понимаем, как различные штаммы одного и того же вида бактерии могут вызывать целый спектр заболеваний, начиная с тонзиллита или легкого поражения кожи до синдрома, напоминающего токсический шок с омертвением фасций. Патогенез скарлатиныэто иллюстрация того, как фаги могут служить катализаторами патогенности бактерий.

Очарование больших трудностей

Новое поколение техники секвенирования ДНК, которая позволила ученым исследовать метагеномы фагов окружающей среды, является также основой сравнительной геномики. Исследование последовательностей ДНК родственных геномов позволяет изучить филогенетические отношения организмов на уровне последовательностей ДНК в их геномах. Сравнительную геномику можно использовать для исследования геномов близкородственных патогенных штаммов и соотношения геномных последовательностей и фенотипа, например таких фенотипических признаков, как устойчивость к лекарствам или способность вызывать разные типы одного заболевания. Массер и его коллеги (Banks, Beres, Musser, 2002) использовали сравнительный геномный анализ для исследования причин гетерогенности заболеваний, вызываемых различными серотипами стрептококков группы A. Авторы выбрали для исследования три близкородственных штамма бактерии Streptococcus pyogenes: один из них ассоциируется с эпидемиями и заразными инфекциями, второй штамм обладает свойством вызывать синдром токсического шока или некротизирующий фасциит, а третий связан со вспышками острого ревматизма. Ученые обнаружили, что широкий спектр вызываемых этими бактериями заболеваний можно объяснить присутствием разных профагов в их геномах. Более одной десятой генома некоторых штаммов была представлена ДНК фагов, и разный состав профагов играл решающую роль в генетическом разнообразии. Полилизогения различными фагами определяет гетерогенность штаммов стрептококков группы A и в конечном счете их патогенный потенциал (Banks, Beres, Musser, 2002).

Геном патогенной бактерииэто, действительно, ведьмино варево, которое становится вирулентным в результате сочетания его активных ингредиентов. Множество разных профагов, обнаруженных в стрептококках, привносят в эту похлебку разные гены, изменяя силу снадобья и его эффекты. Профаги передают своим хозяевам гены с функциями, которые повышают успешность репликации и передачи в условиях человеческого организма, являющегося хозяином для бактерии. В свою очередь, фаг, как паразит, получает преимущество от успешности своего хозяина, так как этот успех позволяет вирусному геному беспрепятственно размножаться в составе бактериального генома. Обсуждаемые гены усугубляют вызываемые стрептококками заболевания; они включают в бактериальный геном гены, кодирующие экзотоксины, которые вызывают катастрофические изменения в иммунной системе больного, становясь причиной лихорадки, шока и других тяжелых симптомов, так же как гены, повышающие шансы бактерий на выживание в организме больного перед лицом его иммунного ответа. Естественный отбор действует на стрептококки и вирусные (фаговые) гены, которые включены в ДНК бактерии. Действие естественного отбора приводит к появлению у разных штаммов различных фенотипов и способности вызывать заболевания разной степени тяжести. Важно отметить, что в организме одного и того же больного присутствуют стрептококки, обладающие высокой и низкой патогенностью. Иногда эти бактерии становятся причиной эпидемий. В девятнадцатом веке, как и сегодня, очевидна изменчивость природы и тяжести заболеваний, вызываемых стрептококками группы A. Природа каждой эпидемии зависит от преобладания того или иного штамма бактерии; и не всегда самым успешным оказывается наиболее патогенный штамм. Как вид мы должны быть благодарны природе за то, что естественный отбор действует на патогенные популяции без оглядки на их патогенность как таковую. Естественный отбор способствует выживанию генов, кодирующих признаки, которые могут наследоваться с наибольшей вероятностью. Эти гены могут ассоциироваться с приобретением повышенной вирулентности, но так происходит далеко не всегда. Вирусы и микробы, с которыми мы сосуществуем и совместно развиваемся, не всегда развиваются в направлении максимальной вирулентности, но они не отказываются от нее, если вирулентность обещает высокий успех репликации и более эффективную передачу новым хозяевам. В этих случаях у микробов и вирусов одна цель, и они получают от своих отношений одну и ту же награду.

Токсичные помощники

В течение многих столетий одно только упоминание о холере вызывало у людей страх. В наши дни эпидемии, вызываемые холерным вибрионом, остаются самыми распространенными в мире и часто возникают на фоне природных катастроф. Холерой заражаются при употреблении внутрь зараженной еды или воды, в результате чего возникает тяжелый и длительный понос, сопровождающийся тяжелым обезвоживанием. Если больного не лечить, возмещая потери воды и электролитов, болезнь быстро становится опасной для жизни, особенно если пациент молод или ослаблен. Тяжелый водянистый понос, вызываемый патогенным возбудителем холеры,  центральное событие для понимания успешности этого кишечного микроба (Faruque, Albert, Mekelanos, 1998). Этот симптом является средством, с помощью которого она передается от одного хозяина к другому, и основой эпидемии, когда отсутствует элементарная санитария и гигиена.

Холера в той или иной форме преследует человечество на протяжении многих веков. Родина холеры находится в Азии, в дельте Ганга, где эта бактерия процветает в солоноватой теплой воде устья великой реки. Именно отсюда распространилась эта болезнь в 1817 году, вызвав первую в мире документально зафиксированную пандемию холеры. Она быстро распространилась через континентальную Азию на весь остальной мир, и процесс этот ускорился благодаря британской торговой практике. Вся торговля с Индией находилась в руках Ост-Индской компании. Эта компания начала свою деятельность с поставок пряностей из Южной Азии, а затем обеспечила британскую монополию на все торговые отношения с Индостанским субконтинентом. На торговых путях господствовали британские парусные суда, трюмные воды которых были загрязнены зараженной водой Бенгальской бухты, и эту воду затем сливали в эстуариях родных портов. Первая эпидемия холеры разразилась в Лондоне в 1832 году и унесла тысячи жизней, а в течение следующих пятидесяти лет зараза проложила путь в Монреаль, а оттуда в Нью-Йорк. Вскоре холера поразила весь земной шар.

К середине девятнадцатого века стало понятно, что источником заражения является питьевая вода. В 1883 году Роберт Кох, выдающийся немецкий бактериолог, лауреат Нобелевской премии, возглавил Германскую комиссию по холере, направленную на изучение вспышки холеры в Египте. Там Кох первым выделил, идентифицировал и вырастил в культуре бактерию V. Choleraeхолерный вибрион. Существует множество штаммов вибриона, но только два серотипа01 и 02 вызывают заболевание. На поверхности клеток этих патогенных штаммов экспрессируются белки фимбрий (вырабатывающих токсин фимбрий), которые образуют выросты на клеточной поверхности, позволяющие вибриону заселять тонкий кишечник. Кроме того, холерные вибрионы обладают генами, которые кодируют чрезвычайно мощный экзотоксин, известный под названием холерного токсина. Этот экзотоксин секретируется в просвет тонкого кишечника и проникает в клетки кишечной стенки. Оказавшись внутри клеток, токсин нарушает их гомеостаз, что приводит к массированному выходу из клеток ионов неорганических солей. Это, в свою очередь, создает градиент концентрации соли, который вызывает выход воды из организма в просвет кишечника, где создается высокое осмотическое давление, и развивается сильнейший понос, при котором из кишечника выделяется водянистый кал, напоминающий «рисовый отвар». Сегодня мы знаем, что патогенность холерного вибриона, безвредного морского микроба, обитающего в эстуариях рек и в прибрежных водах, обусловлена горизонтальной передачей генов в ходе конверсии фагов.

Назад Дальше