Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали - Бембенек Скотт 3 стр.


Отношения между высотой и скоростью дают нам лучшее понимание сохранения энергии. Галилео еще вернется к изучению маятника и еще больше приблизится к разгадке тайны энергии. Однако, прежде чем мы доберемся до этого, давайте поговорим о свободном падении.

Свободное падение

Из наших рассуждений о маятнике мы узнали, что:

 период колебания никогда не зависит от количества массы груза, присоединенного к концу веревки;

 скорость маятника увеличивается с уменьшением высоты, максимальная скоростьв самой низкой точке колебания.

Эти результаты интересны сами по себе, но станут еще интереснее, как только мы свяжем их с другими типами движения.

Маятник, качающийся назад и вперед, в действительности является просто объектом, «полное» падение которого остановили за счет натянутой веревки. Другими словами, веревка препятствует свободному падению маятника. Подумайте об этом как о человеке, который прыгает с моста с тарзанкой. В первый раз он прыгает как обычно, с тросом, обернутым вокруг тела, который гарантирует, что прыгун в конце не ударится о землю. Конечно, для этого длина троса должна быть (при полном натяжении) меньше, чем высота прыжка, чтобы торможение было безопасным. При втором прыжке длина троса (при полном натяжении) гораздо больше, чем высота падения. Тем не менее внизу находится огромный мат, который должен остановить падение и защитить прыгуна от травм.

Это очень похожие сценарии. Единственное значимое различиедлина троса: он меньше начальной высоты при первом прыжке и больше начальной высоты при втором прыжке. По существу, это отношения между качающимся маятником и свободно падающим объектом. Поэтому мы могли бы ожидать, что физические законы, управляющие обоими этими движениями, схожи.

Свободно падающие объекты привлекали внимание Галилея (см. рис. 2.2).

Аристотель считал, что более тяжелый объект упал бы на землю быстрее, чем легкий, но Галилео подозревал, что такого не будет. Изначально Галилео усомнился в этом, когда был студентом в Пизанском университете. В заметке, написанной несколькими годами позже, Галилео упомянул, что его наблюдения были основаны на наблюдениях за камнями разных размеров, падающими на землю. Галилео наблюдал, как большие и маленькие камни падают на землю одновременно вне зависимости от размера, а не как полагал Аристотельсначала большой, потом маленький. Учитывая, что оба начали падение одновременно где-то высоко в небе, Галилей пришел к выводу, что Аристотель был неправ.

Галилео был не первым, кто поставил под сомнение теорию Аристотеля о падающих объектах, и даже не первым, кто проверил ее верность с помощью эксперимента. Согласно записям Вивиани, когда Галилео был профессором в Пизе (15891592), он продемонстрировал ошибочность утверждения Аристотеля о падающих объектах из одинакового материала, но имеющих разный вес, с падающей Пизанской башни:

Рис. 2.2. Объект сталкивают со здания (или башни)  с начальной высоты. Пока он падает, его скорость растет (в то время как высота уменьшается). Он достигает максимальной скорости как раз перед тем, как столкнуться с поверхностью. Время до касания с поверхностью напрямую зависит от начальной высоты.

«он полностью погрузился в исследование; в результате Галилео, к большому неудовольствию всех философов, с помощью опытов, наглядных примеров и аргументов опроверг идеи самого Аристотеля о движении, считавшиеся в то время истиной: как, например, тот факт, что вес объектов из одинакового материала при движении через одну и ту же среду будет влиять на их скорость (на самом деле она будет примерно одинаковой). Раз за разом в присутствии других преподавателей и студентов он подкреплял эти идеи экспериментами, которые проводил с высоты Падающей Пизанской башни».

Галилео пришел к выводу, что объекты с разным весом из одного и того же материала падают с одинаковой скоростью и за одинаковое время; теория Аристотеля была опровергнута раз и навсегда. Эту историю рассказал Вивиани, который вел записи за Галилео в его последние годы, в 1657 году. Сегодня большинство историков не верят, что Галилео действительно бросал предметы с Пизанской башни.

Независимо от этого, мы не можем не гадать, вывел ли Галилей это следствие из своих наблюдений за маятником.

В конце концов, как мы отметили прежде, маятникпросто измененная версия свободного падения. Поэтому, так как период маятникатакже определяющий его время падения (время, которое требуется для падения в низшую точку качания)  не зависит от массы, не должно быть сюрпризом и то, что время свободного падения объекта (время, через которое он коснется поверхности) также не зависит от нее.

Мы находим между качающимся маятником и свободно падающим объектом и другие общие черты. Опять-таки, скорость в любом пункте во время падения зависит от разности высот, и максимальная скорость все еще достигается в самой низкой точкепрямо перед тем, как объект коснется земли. А что же насчет времени падения? Мы уже отметили, что время падения маятника определяется периодом. Для изохронного маятника это означает, что время падения, как и период, зависит только от длины нити; то есть не зависит от начальной высоты (амплитуды). Тем не менее мы также заметили, что это особый случай для маятника, а в общем периода, следовательно, и время падениябудет зависеть от изначальной высоты, так что большая высота увеличивает время падения.

Это также справедливо и для свободно падающих объектов: чем выше начальная высота падения, тем больше времени требуется объекту, чтобы достичь поверхности. Таким образом, взаимоотношения между высотой и скоростью проявляются при свободном падении так же, как и при движении маятника. И снова все это имеет отношение к сохранению энергии. Давайте посмотрим на другую системунаклонную плоскость.

Движение по наклонной плоскости

Мы уже говорили о наклонной плоскости, когда обсуждали простые механизмы, но теперь мы хотим понять принцип движения катящегося по наклонной плоскости объекта (рис. 2.3). Сейчас вам должно быть ясно, что, как и в случае с маятником, это еще одна форма свободного падения. Тогда как свободному падению маятника препятствовал трос (нить), движение объекта на наклонной плоскости ограничено только тем, что он катится по наклону.

Рис. 2.3. После толчка объект катится по наклонной плоскости со своей начальной высоты. По ходу движения его скорость растет (а высота уменьшается). Объект достигнет максимальной скорости в самом конце движения по этой плоскости. Время, которое потребуется ему, чтобы достичь поверхности, зависит от начальной высоты (и угла) (см. также сноску 1 на стр. 40, чтобы узнать больше).

Скорее всего, Галилео начал изучать объекты, катящиеся по наклонной плоскости, в 1602 году, но тогда, будучи не уверенным в результате, перефокусировался на маятник. Однако в 1604 году Галилео придумал способ измерить увеличивающуюся скорость объекта, двигающегося по наклонной плоскости. Последовавшие за этим эксперименты предоставили Галилео точные результаты, которые он применял к свободному падению и маятнику.

Галилео было недостаточно знать, что два объекта, отличающиеся массой, падают с одинаковой скоростью. Он хотел знать, как скоро падающий объект достигнет определенной высоты над землей. К сожалению, Галилео встретил на этом пути проблемы, которые необходимо было преодолеть.

Хотя в то время существовали очень точные способы измерить расстояние и вес, подобного прибора для измерения времени не было; Галилео было необходимо создать «секундомер». Секундомер Галилео состоял из контейнера с водой и отверстием внизу. Поскольку вода вытекала из основания контейнера с постоянной скоростью (приблизительно по три унции жидкости в секунду), у Галилео был точный способ измерить время. Галилео описывает свое устройство и гарантирует его точность в «Диалог о двух главнейших системах мира» (снова через Сальвиати) так:

«Для измерения времени мы использовали большой сосуд, наполненный водой, который был расположен под наклоном; к днищу этого судна была припаяна труба маленького диаметра, по которой текла тонкая струя воды, которую мы собрали в маленьком стакане после каждого спуска Собранную таким образом воду тщательно взвешивали после каждого раза; разница этих весов позволяла нам измерить разницу времени с поразительной точностью, хотя операция повторялась множество раз,  и никакого заметного отличия в результатах замечено не было».

Тем не менее Галилео было непросто даже с водяными часамискорость объекта в свободном падении для точных измерений была слишком высока. Вместо этого Галилео создал способ замедлить свободное падение, сохраняя ключевые физические результаты, которые и позволили ему позже сделать точные измерения при помощи водных часов. План Галилео был прост и изящен: рассмотреть объект, который катится по наклонной плоскости. Теперь объект «падал» гораздо медленнее, что позволило Галилео произвести точные измерения при помощи часов. Галилео был убежден, что основные принципы физики одинаковы, катится ли объект с определенной высоты (по наклонной плоскости) или совершает свободное падение с той же самой высоты. Следовательно, он предвидел, что математические выражения для расчета времени достижения высотыпусть и не одинаковые  будут похожи для обоих маршрутов. В конце концов, единственная разница между находящимся в состоянии свободного падения и катящимся вниз с одной и той же высоты объектами заключается в том, что последний двигается как по вертикали (высота), так и по горизонтали (длина), а первый только по вертикали, так как просто падает на землю.

Изначально Галилей предполагал, что вертикальное и горизонтальное направления движения объекта вниз по наклонной плоскости не зависят друг от друга, и их можно рассматривать отдельно. Это означало бы, что законы физики для движения в вертикальном направлении (которое интересовало его больше всего) одинаковы для свободного падения и движения по наклонной плоскости. Что же, оказывается, гипотезы Галилео были верны.

К данному моменту вас не должно удивлять, что скорость объекта, катящегося по наклоненной плоскости, увеличивается по мере снижения высоты. Максимальная скорость достигается в самой низкой точке, а время падения (время, которое требуется, чтобы скатиться к основанию наклонной плоскости) не зависит от массы, но непосредственно связано с начальной высотой, как и для (общего случая) маятника, и для свободно падающего объекта.

Так, для всех трех систем результаты одинаковы из-за того, что природа требует сохранения энергии. Кстати, мы не обсуждали подробно, что же в действительно влечет за собой это самое сохранение энергии; похоже, я немного затянул. Тем не менее для обсуждаемых систем у нас есть два фундаментальных типа отношений между высотой и скоростью:

 более низкая высота (от отправной точки) означает, что объект перемещается быстрееэто значит, что его наивысшая скорость будет достигнута в самой низкой точке;

 чем выше начальная высота, тем больше времени будет затрачено на падение, за исключением изохронного маятника, у которого время падения одинаково для каждой высоты.

Давайте посмотрим на другую версию эксперимента Галилео с маятником.

Повторное рассмотрение маятника

В эксперименте с «прерванным маятником» Галилео раскрыл еще больше последствий сохранения энергии. Вспомните, что маятник Галилео был просто свинцовым шаром, весящим одну-две унции, подвешенным на нити. Теперь вообразите маятник, спущенный от гвоздя, вбитого в стену,  маятник, который может свободно качаться из одной стороны в другую. От его точки покоя (где он висит вертикально) мы перемещаем маятник, скажем, вправо на некоторую начальную высоту и затем выпускаем его, не придавая ему ускорения.

Поскольку маятник качается справа налево, мы видим, что он достигает своей конечной высоты. Галилео, вероятно, делал это много раз на различных начальных высотах и каждый раз получал один и тот же результат: начальная высота всегда равняется конечной. Ну, честно говоря, конечная высота, вероятно, немного ниже из-за некоторого сопротивления воздуха, но Галилео вывел, что пренебрежение этим приведет к равным высотам, что и было ключевым в этом исследовании.

Но тогда Галилео добавил к оригинальному эксперименту поворот. Теперь вообразите те же условия, за исключением того, что на этот раз мы забиваем гвоздь в стену таким образом, что струна неизбежно столкнется с ним, поскольку маятник качается справа налево (рис. 2.4). Хотя колебание маятника изменились из-за гвоздя, мы опять понимаем, что начальная высота и конечная равны. Однако что будет, если мы поменяем положение гвоздя? Это не имеет значения. Нить просто зацепится за гвоздь, колебание изменится, и маятник достигнет своей конечной высоты, которая (как и прежде) совпадет с начальной высотой.

Рис. 2.4. Как и прежде, маятник перемещается направо, покидая точку покоя (самую низкую точку, в которой он висит вертикально), а затем поднимается на прежнюю высоту. При движении справа налево маятник цепляется за гвоздь, который вынуждает его изменить путь. Независимо от этого, маятник все равно достигает конечной высоты, которая совпадает с начальной.

Давайте рассмотрим еще одну, последнюю возможность: что если гвоздь лишает маятник возможности изменять свое колебание таким образом, чтобы он мог на самом деле достигнуть конечной высоты, которая равна начальной? В этом случае маятник просто продолжает двигаться, поскольку он оборачивается вокруг гвоздя.

Когда мы говорили о маятнике прежде, мы узнали, что, поскольку он качается вниз, удаляясь от начальной высоты, его скорость увеличивается. Другими словами, уменьшение в высоте приводит к увеличению скорости. Теперь мы видим, что, поскольку маятник продолжает движение на подъеме, его конечная высота (или максимальная высота) совпадет с начальной. Как связаны эти концепции? Оказывается, взаимодействие между высотой и скоростью четко уравновешено. Мы выяснили, что сила тяготения, действующая на объект на данной высоте, передает ему потенциальную энергию, но мы никогда не говорили о ее коллеге, имя которой кинетическая энергия. Тогда как потенциальная энергия«сохраненная энергия», кинетическая энергия«энергия движения», которая придает объекту его скорость.

Ранее мы обсуждали, как работа сохраняется таким образом, что уменьшение в необходимой силе приводит к увеличению расстояния, на которое она прилагается, при использовании простой машины. Тем не менее общая работа, затрачиваемая на выполнение задачи, сохраняется.

Принципы сохранения кинетической и потенциальной энергии похожи. В случае маятника это означает, что, поскольку высота уменьшается, потеря потенциальной энергии компенсируется увеличением кинетической энергии, что означает увеличение скорости. И наоборот: в то время как маятник продолжает движение на подъем, он становится все ближе и ближе к своей начальной высоте (но с другой стороны), и, соответственно, уменьшается кинетическая энергия, маятник замедляется и останавливается на мгновение на финальной высоте (равной той, с которой он начал движение), перед тем как упасть обратно вниз. Поэтому маятник двигается с самой высокой скоростью в самой низкой точке колебания, в то время как его скорость ниже всего в самом верху колебания. Этот обмен между потенциальной энергией и кинетической энергией не уникален для маятника; это относится ко всем системам (наклонной плоскости, объектам в свободном падении и другим) и прекрасно сбалансировано, когда отсутствует трение.

В середине 1609 года Галилео работал над своим трактатом о науке о движении и, услышав об изобретении подзорной трубы (предвестника телескопа), бросил все, чтобы сделать свою собственную версию. К концу августа у Галилео был 9-кратный телескоп, который он представил венецианскому Сенату и высокопоставленным лицам. За старания его вознаградили двойной зарплатой и жильем. Однако были некоторые недоразумения, о которых Галилео узнал после. До истечения его текущего контракта зарплата не повышалась, и он должен был преподавать в Университете Падуи всю жизнь. Недовольный этой договоренностью, Галилео смог добиться нового соглашения в 1610 году, став главным математиком Пизанского университета и философом и математиком Великого герцога Тосканы. Назначение было пожизненным, и он не был обязан преподавать в университете. Он также не был обязан проживать в Пизе, что позволило ему наконец вернуться в любимую Флоренцию.

Назад Дальше