Вселенная в зеркале заднего вида. Был ли Бог правшой? Или скрытая симметрия, ативещество и бозон Хиггса - Дэйв Голдберг 3 стр.


Ядро составляет около 99,95 % массы атома, однако занимает всего лишь примерно одну квадрильонную общего объема. Это как будто скромное офисное здание по сравнению со всем земным шаром. Вероятность попадания альфа-частицы в ядро в эксперименте Резерфорда примерно эквивалентна вероятности случайного попадания метеорита в Белый дом. Большинство угодит мимо цели.

А мы можем еще сильнее углубиться в недра ядра  и там мы обнаружим протоны (положительно заряженные) и нейтроны (нейтральные, что явствует из названия). Количество протонов определяет, о каком именно химическом элементе идет речь. У водорода один протон, у гелия  два, у лития  три и т. д. Если вы забыли, который элемент какой, посмотрите в волшебную таблицу Менделеева. Нейтроны, со своей стороны, не влияют на химическую бухгалтерию  разные их количества обозначают лишь разные изотопы одного и того же элемента.

К тому же мы до сих пор пополняем свой арсенал новыми элементами. В 2006 году российские и американские ученые совместно открыли 118й элемент унуноктий. Когда я говорю «открыли», то имею в виду, что они создали его в лаборатории, что в данном случае означает со всего размаху столкнуть кальций с калифорнием (который тоже сначала нужно сделать в лаборатории). В результате получилось всего три атома, и просуществовали они ничтожную долю мгновения. Беда в том, что массивные ядра вроде унинокция (почти в 300 раз тяжелее обычного водорода) обычно бывают крайне нестабильны. Они стремятся как можно скорее распасться на более легкие частицы. Унуноктий живет всего лишь около миллисекунды, а следовательно, едва ли удастся обнаружить его залежи.

Радиоактивный распад  всего лишь привычный факт в жизни субатомного мира, и эти слова, вероятно, приводят на ум малоприятные вещества вроде плутония и урана. А чтобы понять, почему эти элементы такие неприятные, мы оторвемся от микроскопа и сделаем краткое отступление в сторону самых знаменитых физических формул.

Как сделать что-то из ничего?

Даже если вы терпеть не могли школьные уроки физики, даже если у вас от математики по всему телу идут волдыри, я готов спорить, что эту формулу вы уже знаете  хотя бы понаслышке:

E = mc²

Помните Чудесный год Эйнштейна  1905 год? Это уравнение  жемчужина его специальной теории относительности, формула, лежащая в основе атомной энергетики и определяющая жизнь нашего Солнца. А также поведение вещества, из которого вы состоите.

Что такое масса и энергия (соответственно m и E), всем более или менее понятно. Соединяет их c, скорость света и абсолютный предел скорости во вселенной.

Честно говоря, название «скорость света» не очень-то удачное, поскольку со скоростью с перемещается любая частица, лишенная массы. В том числе, конечно, и фотон, частица света, но кроме фотона, есть еще по крайней мере несколько таких частиц. Например, глюоны  частицы, отвечающие за то, чтобы скреплять ядра из протонов.

У фотонов с глюонами уйма общего. Физической вселенной управляют четыре фундаментальные силы, и у каждой из них есть по крайней мере одна частица-переносчик, своего рода субатомный посредник. Вот как действуют эти силы. Работа частицы-переносчика  субатомный аналог передачи записочки на уроке физкультуры, и, например, для электромагнетизма фотоны служат посредниками, которые сообщают одинаковым зарядам, что им положено отталкиваться, а противоположным  притягиваться. Глюоны играют ту же роль в сильном ядерном взаимодействии  самой мощной из всех фундаментальных сил. На другом полюсе находится гравитация: как ни странно, вопреки нашему повседневному опыту, это самая слабая из фундаментальных сил, и частица-переносчик у нее то ли есть, то ли нет. Мы заранее назвали ее гравитоном, поскольку было бы так красиво и элегантно, если бы гравитация была устроена так же, как и остальные три фундаментальные силы. Однако зарегистрировать гравитон нам пока не удалось.

Все эти частицы  фотоны, глюоны и гравитоны (если они существуют), лишены массы, а поэтому перемещаются со скоростью света. Поскольку вы, вероятно, состоите из массивных частиц, то навеки обречены перемещаться со скоростью меньше скорости света. Такова жизнь.

К счастью, в обыденной жизни соблюдать это ограничение не очень обременительно. Скорость света очень велика, примерно 300 000 километров в секунду или около миллиарда километров в час. Земля перемещается со скоростью более 100 000 километров в час и обходит вокруг Солнца за год. Свету на такой же путь нужно всего лишь около 52 минут.

Уравнение Эйнштейна задает своего рода соотношение валютного курса массы и энергии. Вводишь какое-то количество массы, полностью уничтожаешь  и получаешь сколько-то энергии. Чтобы вы не думали, будто я задаром выдаю государственные тайны, поясню, что это легко сказать, но трудно сделать.

Для начала возьмите килограмм водорода, разогрейте примерно до 10 миллионов градусов по Кельвину и плотно упакуйте. Готово! Вы восхитительны! Вы сделали себе ядерный реактор наподобие Солнца, способный превращать водород в гелий и некоторые другие частицы, гораздо более легкие.

Когда термоядерный синтез закончится, у вас будет 993 грамма конечного продукта, в основном  пепел, оставшийся после ядерных реакций. Так вот, вся магия происходит с 7 «исчезнувшими» граммами. Они превращаются в чистую энергию, и хотя кажется, будто это достаточно скудные дивиденды, с так огромна, что в результате высвобождается колоссальное количество энергии. Даже если коэффициент превращения составляет 0,7 %, Солнце будет гореть около 10 миллиардов лет. Подобное же солнце на угле проработало бы сущую малость  какие-то 10 тысяч лет.

Или возьмем радиоактивный распад. Кусок радия быстро начнет распадаться на элементы вроде радона и гелия, которые в сочетании заметно легче первоначального атома радия. Излишек превращается в высокоэнергичное рентгеновское излучение.

Мари Кюри, одна из первооткрывателей радиоактивности, на себе испытала все ее вредоносное воздействие. Подобная профессия чревата смертельными опасностями; в частности, близкий контакт с материалами вроде радия губителен для здоровья. Мари Кюри умерла от апластической анемии, вызванной облучением, и весь ее архив и по сей день хранится в свинцовых коробках: бумаги так радиоактивны, что работать с ними опасно. На фотопленке, заложенной между страниц, проявились отпечатки пальцев Мари.

У формулы E = mc² есть и обратная сторона. Можно производить энергию из массы  однако и энергия может создавать массу. Однако   огромное число, а следовательно, много массы из энергии при обычных обстоятельствах не получишь. Но если у тебя есть достаточно энергии, можно творить поразительные вещи. Представьте себе, что какая-то особенно предприимчивая сверхцивилизация решила по-быстрому создать много-много массы. Если покрыть всю Землю самыми производительными солнечными батареями, в принципе, можно создавать 2 кило вещества в секунду. И это будет соответствовать потреблению энергии примерно в 50 000 раз большему, чем потребляет сегодня все человечество.

Мы можем и не дожидаться сверхцивилизации  на субатомном уровне энергия постоянно конвертируется в массу. Протоны и нейтроны  это «кирпичики», из которых строится вещество, однако они, в свою очередь, тоже состоят из элементарных частиц  так называемых кварков, по три на штуку. Поразительно, но факт: если сложить массы кварков, получится лишь примерно 2 % массы протона. Остальные 98 % составляет колоссальная энергия, которая участвует в движении и взаимодействии кварков внутри протона.

Подведем итоги. Вы состоите из фундаментальных частиц, то есть почти полностью из пустоты, а те крохи, которые в этой пустоте попадаются, совсем не так уж массивны. Такими они кажутся из-за эфемерной энергии. Частицы могут создаваться целиком и полностью из энергии и тут же распадаться. Вы  не просто куда больше, чем сумма своих частей, строго говоря, составляющие вас части  не более чем кучка спичек в водовороте пульсирующих и визжащих энергетических взаимодействий. Так-то!

А где все антилюди?

Энергию можно применять для создания вещества «с нуля», однако одновременно создается и антивещество: своего рода побочный эффект. Я уже говорил, что у антивещества своя роль, но еще не объяснил, какая именно. Готовьтесь  вас совсем не ждет потрясение! У каждой частицы есть своя антиверсия, которая ведет себя практически так же, как и обычная частица, например, у нее такая же масса,  только с противоположным зарядом. Позитрон ведет себя точь-вточь как электрон, только у электрона отрицательный заряд, а у позитрона, наоборот, положительный. Заряд у антипротона отрицательный, в противоположность положительному заряду протона, и т. д.

Самое, пожалуй, безумное во всей истории с антивеществом  то, что если бы у вас хватило ума  а у английского физика П. А. М. Дирака его, очевидно, хватило,  то вы предсказали бы ее существование еще до того, как ее открыли. В 1928 году Дирак вывел уравнения релятивистской квантовой механики. Да, суть ее так же заковыриста, как и название. Пропахав уравнения, Дирак отметил, что некоторые решения в них не учтены. Например, он обнаружил, что из этой теории естественным образом следует существование не только электронов, но и других частиц той же массы и с противоположным зарядом.

Согласно уравнению Дирака, у любой частицы вроде электрона должна быть античастица. Поначалу он сделал не совсем верные выводы. Например, позитрон в его представлениях был таков:

Электрон с отрицательной энергией, который движется во внешнем поле так, словно обладает положительным зарядом.

Дирак сам не знал, о чем говорят его уравнения. Если бы его первоначальные интуитивные догадки оказались верны, можно было бы, в сущности, генерировать бесконечную энергию, просто производя позитроны. Это все равно что вести бизнес, набирая бесконечные беспроцентные кредиты.

Но потом Дирак понял, как все обстоит на самом деле: позитроны  это просто обратная сторона электронов. Иначе говоря, судя по всему, существует глубокая симметрия вещества и еще не открытого антивещества.

Чтобы подтвердить существование этой глубинной симметрии мироздания, было мало только продраться сквозь математические дебри. В то время не было никаких экспериментальных свидетельств существования позитрона и прочих античастиц, вот почему все так обрадовались, когда вскоре, в 1932 году, Карл Андерсон открыл позитроны в своей лаборатории при Калифорнийском технологическом институте. Иногда всякая запредельная математика все же связана с реальностью

А реальность этого близнеца-перевертыша  античастицы  состоит в том, что хотя противоположности притягиваются, частицам и античастицам стоит от этого воздерживаться. Стоит электрону с позитроном вступить в контакт друг с другом  и тут же волшебная формула E = mc 2 превращает их массу в огромное количество энергии.

Какую частицу мы назовем просто «обычной», а какую «анти», в принципе, все равно. В параллельной вселенной, которая полностью состоит из того, что мы называем антивеществом, антилюди наверняка называют свои атомы обычными, а мы для них «анти». И это как раз тот редкий случай, когда все правы  и мы, и они. Вопрос названия.

Я не хочу сказать, что в нашей вселенной нет антивещества. Антивещество непрерывно создается в недрах Солнца, которое рождает позитроны в виде побочного эффекта синтеза гелия из водорода. А поближе к дому мы можем наблюдать всевозможные экзотические античастицы в больших ускорителях вроде Большого Адронного Коллайдера, который расположен во Франции и Швейцарии.

В лабораторных условиях можно даже создавать антиверсии атомов. В 2002 году Европейская организация по ядерным исследованиям (ЦЕРН) сумела создать и зарегистрировать буквально тысячи атомов антиводорода с точно такими же качествами, что и у обычного водорода. В 2011 году был побит рекорд массы античастицы: на Релятивистском коллайдере тяжелых ионов на Лонг-Айленде было создано первое ядро антигелия. Правда, античастицы быстро покидают этот мир. Они быстро распадаются или сталкиваются с обычными частицами и аннигилируют.

Итак, античастицы выглядят точно так же, как и обычные, однако одинаковы ли они на самом деле? Это наша первая официальная симметрия, поэтому я дам ей четкое определение, чтобы вы понимали, насколько это важно.

С-симметрия, она же Зарядовое сопряжение, состоит в том, что физические законы применимы к античастицам точно так же, как и к соответствующим обычным частицам.

И хотя мы даже дали этой симметрии особое название (С-симметрией она названа по первой букве слова «charge»  «заряд»), из нее не обязательно следует, что вещество и антивещество и в самом деле ведут себя в нашей вселенной одинаково. Такой вывод  это, скорее, обоснованная догадка.

Однако поскольку мы не в силах наслать такие чары, чтобы все частицы разом заменились на соответствующие античастицы, нам придется делать кое-какие умозрительные заключения, что и подведет нас к главной тайне вещества и антивещества.

В лаборатории  то есть во всех субатомных реакциях, которые мы так или иначе наблюдали,  невозможно создавать частицы, не создавая одновременно соответствующего числа античастиц. Неуловимые частицы вроде бозона Хиггса мы регистрируем, наблюдая не саму частицу, а ее распад на частицу и античастицу.

А обратная сторона медали такова, что если положить электрон и позитрон в кастрюлю и хорошенько размешать, то оба они будут уничтожены, и высвободится вся энергия, которую пообещал вам Эйнштейн. Именно это постоянно происходит в космическом вакууме. Частицы и античастицы создаются и уничтожаются, и это идеально согласованные процессы.

По крайней мере, сейчас именно это и происходит. Когда-то, в далеком прошлом, обычное вещество одерживало верх. Так было не только в нашем захолустном уголке вселенной  похоже, так было везде. Важная, но еще не вполне осознанная задача современной космологии  разобраться, почему тогда была нарушена нынешняя С-симметрия вселенной, а для этого нам придется заглянуть в прошлое.

В 2001 году НАСА запустило космический аппарат WMAP  Зонд микроволновой анизотропии имени Уилкинсона. Как явствует из сокращенного названия, где ясно видно слово «map»  «карта», задачей аппарата было создать подробную карту реликтового микроволнового излучения, пережитка первых эпох существования вселенной.

Я уже говорил, что свет состоит из частиц под названием фотоны, однако уклонился от ответа на вопрос, чем фотоны отличаются друг от друга. Различия сводятся к энергии. Например, у синего света энергии в пересчете на отдельный фотон больше, чем у красного. При еще более низкой энергии, чем у красного света, за пределами чувствительности глаз, мы обнаруживаем инфракрасное, а если энергия еще ниже  микроволновое излучение. На другом конце спектра, при энергиях, которые высоковаты для наших глаз, находятся ультрафиолетовые фотоны. При энергиях еще выше получается рентгеновское излучение, а при самых высоких  гамма-излучение.

Если вам случалось надевать инфракрасные очки, вы, наверное, заметили, что живые теплокровные существа светятся чуть-чуть ярче, чем их более прохладное окружение. Именно поэтому Хищник так здорово охотится. Все теплые тела испускают излучение, некоторые  особенно сильно, если вы меня понимаете Раскаленные уголья светятся красным, однако вселенная гораздо холоднее угля, ее температура составляет около 2,7 К, и она светится в микроволновом диапазоне. В глубоком космосе холодно, очень холодно.

Однако стужа царила здесь не всегда. Вселенная расширяется, а это значит, что энергия все сильнее и сильнее рассеивается. На ранних этапах истории вселенной все было упаковано гораздо плотнее, и температуры стояли куда как выше. Например, спустя 14 миллионов лет с момента возникновения вселенной, в ней стояла приятная, комнатная температура в 310 К, и вселенная светилась в инфракрасном диапазоне. Если заглянуть еще дальше, то окажется, что через 1 секунду после Большого взрыва температура вселенной составляла 10 миллиардов градусов, а еще раньше, через 1 микросекунду после него,  более 10 триллионов градусов!

Назад Дальше