ВСЕЛЕННАЯ СВЕТА: Два ключа к тайнам Вселенной. Том 1 - Владимир Авдеев 18 стр.


Распределение потенциалов сил натяжения и сокращения кристаллической решетки метафизического гиперкуба представлено на рисунке 11. а-в. Максимальные значения этих характеристик проявления двойственной силы Света приходятся соответственно на вершины и середины ребер-струн восьми кубических подсистем. Примечательно распределение потенциалов силы натяжения на их гранях. Точки максимального значения распределены по диагоналям на вершинах элементарных ячеек (рис. 11.б, 13.а). С учетом того, что на них приходятся нулевые потенциалы силы сокращения (рис. 11.в), можно говорить о формировании двунаправленных векторов изостатического напряжения. Это проявление качественно другого элемента в структуре кристаллической решетки гиперкуба.

В отличие от пространственных струн натяжения, образующих ребра кубических подсистем, в нем нет потенциала силы сокращения. По модулю он равен длине диагонали грани трехмерной ячейки. Это не что иное, как элементарное одномерное звено структуры жесткости. На уровне кубических подсистем из них на каждой грани гиперкуба образуются четыре креста (рис.13.а), которые в сопряжении формируют поверхностный каркас. С переходом на трехмерный уровень становится очевидным, что, начиная с элементарной ячейки и кончая гиперкубом, мы имеем дело с наружным проявлением системы соподчиненных треугольных плоскостей изостатического напряжения (рис. 11.г, д). В совокупности они образуют двухмерную решетку, которая, пересекая по диагонали, объем шестигранника касается вершин элементарных ячеек с максимальным в них значением потенциала силы натяжения. Несомненно, кристаллическая решетка с такой особенностью распределения единиц потенциала силы натяжения определяет максимальную прочность структуры по всему объему формируемого тела. Это важное обстоятельство и к нему мы вернемся, когда будем проводить связь с материальными аналогами.


Рис. 12. Механизм роста кристаллической решетки гиперкуба Вселенной Света


В приведенном на рисунках 11,13 гиперкубе вершины сопряжения восьми кубических подсистем с максимальным потенциалом силы натяжения на них есть не что иное, как точки сборки главного элемента внутренней структуры напряжения Вселенной Света. В рассматриваемом примере оно в точках сцепления составляет 6 единиц, что равно сумме трансформированных в нейтральную плоскость проявленного пространства, равных по величине потенциалов истекающего и отраженного Света. Следует ожидать, что в момент достижения системой статического равновесия на эти центры натяжения при равенстве противодействующих сил в 14 единиц будет приходиться сумма потенциалов, равная заданному в 28 единиц точечному заряду действия. Таким образом, раскрывается еще одна метафизики созидания Вселенной Света. Наведенный положительный заряд без каких-либо потерь через действие принципа поляризации двойственной силы Света трансформируется из области небытия в область первого проявления  в замкнутое пространство статического напряжения, в геометрии которого, как в клише, находит свое воплощение объединенный принцип творения.

Излагаемая модель формирования космической силовой системы позволяет увидеть метафизическую природу связи возведения любого числа во вторую и в третью степени с формированием, соответственно, двухмерной решетки напряжения шестиугольника и кристаллической решетки напряжения гиперкуба. Примером первого случая является изображение на рисунке 10.в, где число сформированных элементарных ячеек определяется по формуле 6φд². В ней φд  величина задействованного потенциала действия для формирования соответствующего уровня напряжения шестиугольника, а коэффициент 6  число направлений раскрытия силового круга, внутрь которого вписан данный многоугольник. Возведение потенциала силы действия во вторую степень отражает двухмерное проявление принципа поляризации двойственной силы Света с образованием соответствующей мерности пространства натяжения.

Число элементарных ячеек в рассматриваемом шестиугольнике напряжения равно 66² = 216. Если элементарную ячейку двухмерной решетки шестиугольника принять за единицу проявления пространства натяжения, то полученное число составляет площадь его напряжения Su. В ней знакомые нам атрибуты геометрии и физики неразделимы как аспекты проявления творящего Света. Нельзя обойти сравнение площади напряженности шестиугольника с полем космической «шахматной доски», где светлые и темные ячейки (клетки) олицетворяют противостояние в космогонической партии.

С переходом к гиперкубу число элементарных ячеек кристаллической решетки определяется по формуле 8φд³, где коэффициент 8 отражает число направлений сворачивания восьмеричного шестигранника, а возведение в третью степень является трехмерным проявлением принципа поляризации двойственной силы с образованием объемного пространства напряжения. Число элементарных ячеек или объем напряженности Vu в приведенном на рисунке 11 примере составляет 8 3³ = 216. При меньшем в два раза потенциале действия получено то же число ячеек, что и в рассмотренном случае формирования двухмерной решетки шестиугольника. Это является подтверждением сделанного вывода относительно характера роста кристаллической решетки светоносного гиперкуба напряжения.

Для полного выяснения картины формирования трехмерной решетки напряжения необходимо отметить одну особенность приращения в ней элементарных ячеек на каждое проявление единицы потенциала силы действия. Как уже отмечалось, образование двухмерной решетки шестиугольника напряжения происходит в арифметической прогрессии. В трехмерном аналоге нет постоянного числа, которое можно использовать как разность для определения количества ячеек в рядах кристаллической решетки. Здесь мы сталкиваемся с разницей, которая с каждым проявлением потенциала действия увеличивается в арифметической прогрессии. На уровне формирования одного из восьми кубов гиперкуба приращение к разницы равно 6 и в целом прирост представлен числами 6, 12, 18, 24 , а количество ячеек в рядах, соответственно, числами 1, 7, 19, 37, 61  (рис. 12.в, г).


Рис. 13. Элементы структуры изостатического напряжения гиперкуба Вселенной Света


В пределах гиперкуба, где проявляется восьмеричный принцип роста, приращение к разнице составляет 48 (48, 96, 144, 192 ). Тогда количество ячеек в рядах будет представлено последовательностью чисел 8, 56, 152, 296, 488 . Суммируя количество ячеек первых трех рядов, мы получим знакомое нам число 216, отражающее объем напряженности шестигранника в 3 единицы проявленного потенциала действия светосилы (рис. 11).

Для того чтобы разобраться в феномене такого роста кристаллической решетки, обратимся к изображению на рисунке 12.в, где на примере одной из восьми кубических подсистем представлены ряды ячеек, соответствующие последовательному проявлению первых четырех единиц потенциала Света. Они позволяют не только вынести представление о рядах ячеек и их соотношениях в кристаллической решетке гиперкуба, но и увидеть реальное проявление разницы с ее приращением. Она воплощена в контуре, очерчивающем трехмерный ряд ячеек (рис. 12.г). Как было установлено выше, эта ломаная линия является элементом свертки двухмерной двойственной плоскости шестиугольника в трехмерное пространство подсистемы гиперкуба. Количество ячеек в нем определяет величину разницы, с прибавлением которой к числу ячеек предыдущего ряда образуется следующий ряд. При этом приращение к разнице  величина постоянная и соответствует шести ячейкам элемента свертки на уровне проявления потенциала действия в 1 единицу. Это хорошо видно при совмещении соответствующих рядов с элементами свертки. К тому же рассматриваемый элемент свертки является одним из восьми структурных единиц трехмерного креста напряжения, за счет которого происходит растяжение объема кристаллической решетки гиперкуба (рис. 12.б).

Увеличение разницы на 6 ячеек с каждым проявлением единицы потенциала созидания предопределено особенностью формирования двухмерной решетки шестиугольника напряжения. Как нам известно, этому числу равна разница в арифметической прогрессии прибавления ячеек от ряда к ряду. Превосходство на эту величину каждого следующего ряда позволяет при последовательной их трансформации в ряды трехмерных ячеек сохранять целостность линии свертки относительно охватываемого объема кристаллической решетки куба.

Отмеченные особенности формирования кристаллической решетки гиперкуба как основного элемента внутренней структуры напряжения сферы Вселенной Света будут неполными, если не рассмотреть еще ряд важных обстоятельств. Так, на примере формирования второго ряда ячеек одной из восьми кубических подсистем (рис. 12.в, г) на первый взгляд видно определенное несоответствие сказанному выше. Если мы зрительно к первому ряду в 1 ячейку прибавим элемент свертки в 6 ячеек, то будет не хватать одной ячейки для полного охвата объема напряжения кубической подсистемы в 2 единицы потенциала задействованной светосилы.

Назад Дальше