Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras - Alfred Wallace 10 стр.


Discontinuity a Proof of Antiquity.Discontinuity will therefore be an indication of antiquity, and the more widely the fragments are scattered the more ancient we may usually presume the parent group to be. A striking example is furnished by the strange reptilian fishes forming the order or sub-order Dipnoi, which includes the Lepidosiren and its allies. Only three or four living species are known, and these inhabit tropical rivers situated in the remotest continents. The Lepidosiren paradoxa is only known from the Amazon and some other South American rivers. An allied species, Lepidosiren annectens, sometimes placed in a distinct genus, inhabits the Gambia in West Africa, while the recent discovery in Eastern Australia of the Ceratodus or mud-fish of Queensland, adds another form to the same isolated group. Numerous fossil teeth, long known from the Triassic beds of this country, and also found in Germany and India in beds of the same age, agree so closely with those of the living Ceratodus that both are referred to the same genus. No more recent traces of any such animal have been discovered, but the Carboniferous Ctenodus and the Devonian Dipterus evidently belong to the same group, while in North America the Devonian rocks have yielded a gigantic allied form which has been named Heliodus by Professor Newberry. Thus an enormous range in time is accompanied by a very wide and scattered distribution of the existing species.

Whenever, therefore, we find two or more living genera belonging to the same family or order but not very closely allied to each other, we may be sure that they are the remnants of a once extensive group of genera; and if we find them now isolated in remote parts of the globe, the natural inference is that the family of which they are fragments once had an area embracing the countries in which they are found. Yet this simple and very obvious explanation has rarely been adopted by naturalists, who have instead imagined changes of land and sea to afford a direct passage from the one fragment to the other. If there were no cosmopolitan or very wide-spread families still existing, or even if such cases were rare, there would be some justification for such a proceeding; but as about one-fourth of the existing families of land mammalia have a range extending to at least three or four continents, while many which are now represented by disconnected genera are known to have occupied intervening lands or to have had an almost continuous distribution in tertiary times, all the presumptions are in favour of the former continuity of the group. We have also in many cases direct evidence that this former continuity was effected by means of existing continents, while in no single case has it been shown that such a continuity was impossible, and that it either was or must have been effected by means of continents now sunk beneath the ocean.

Concluding Remarks.When writing on the subject of distribution it usually seems to have been forgotten that the theory of evolution absolutely necessitates the former existence of a whole series of extinct genera filling up the gap between the isolated genera which in many cases now alone exist; while it is almost an axiom of "natural selection" that such numerous forms of one type could only have been developed in a wide area and under varied conditions, implying a great lapse of time. In our succeeding chapters we shall show that the known and probable changes of sea and land, the known changes of climate, and the actual powers of dispersal of the different groups of animals, were such as would have enabled all the now disconnected groups to have once formed parts of a continuous series. Proofs of such former continuity are continually being obtained by the discovery of allied extinct forms in intervening lands, but the extreme imperfection of the geological record as regards land animals renders it unlikely that this proof will be forthcoming in the majority of cases. The notion that if such animals ever existed their remains would certainly be found, is a superstition which, notwithstanding the efforts of Lyell and Darwin, still largely prevails among naturalists; but until it is got rid of no true notions of the former distribution of life upon the earth can be attained.

CHAPTER V

THE POWERS OF DISPERSAL OF ANIMALS AND PLANTS

Statement of the general question of DispersalThe Ocean as a Barrier to the Dispersal of MammalsThe Dispersal of BirdsThe Dispersal of ReptilesThe Dispersal of InsectsThe Dispersal of Land MolluscaGreat Antiquity of Land-shellsCauses favouring the Abundance of Land-shellsThe Dispersal of PlantsSpecial adaptability of Seeds for DispersalBirds as agents in the Dispersal of SeedsOcean Currents as agents in Plant DispersalDispersal along Mountain-chainsAntiquity of Plants as affecting their Distribution.

In order to understand the many curious anomalies we meet with in studying the distribution of animals and plants, and to be able to explain how it is that some species and genera have been able to spread widely over the globe, while others are confined to one hemisphere, to one continent, or even to a single mountain or a single island, we must make some inquiry into the different powers of dispersal of animals and plants, into the nature of the barriers that limit their migrations, and into the character of the geological or climatal changes which have favoured or checked such migrations.

The first portion of the subjectthat which relates to the various modes by which organisms can pass over wide areas of sea and landhas been fully treated by Sir Charles Lyell, by Mr. Darwin, and many other writers, and it will only be necessary here to give a very brief notice of the best known facts on the subject, which will be further referred to when we come to discuss the particular cases that arise in regard to the faunas and floras of remote islands. But the other side of the question of dispersalthat which depends on geological and climatal changesis in a far less satisfactory condition, for, though much has been written upon it, the most contradictory opinions still prevail, and at almost every step we find ourselves on the battle-field of opposing schools in geological or physical science. As, however, these questions lie at the very root of any general solution of the problems of distribution, I have given much time to a careful examination of the various theories that have been advanced, and the discussions to which they have given rise; and have arrived at some definite conclusions which I venture to hope may serve as the foundation for a better comprehension of these intricate problems. The four chapters which follow this are devoted to a full examination of these profoundly interesting and important questions, after which we shall enter upon our special inquirythe nature and origin of insular faunas and floras.

The Ocean as a Barrier to the Dispersal of Mammals.A wide extent of ocean forms an almost absolute barrier to the dispersal of all land animals, and of most of those which are aerial, since even birds cannot fly for thousands of miles without rest and without food, unless they are aquatic birds which can find both rest and food on the surface of the ocean. We may be sure, therefore, that without artificial help neither mammalia nor land birds can pass over very wide oceans. The exact width they can pass over is not determined, but we have a few facts to guide us. Contrary to the common notion, pigs can swim very well, and have been known to swim over five or six miles of sea, and the wide distribution of pigs in the islands of the Eastern Hemisphere may be due to this power. It is almost certain, however, that they would never voluntarily swim away from their native land, and if carried out to sea by a flood they would certainly endeavour to return to the shore. We cannot therefore believe that they would ever swim over fifty or a hundred miles of sea, and the same may be said of all the larger mammalia. Deer also swim well, but there is no reason to believe that they would venture out of sight of land. With the smaller, and especially with the arboreal mammalia, there is a much more effectual way of passing over the sea, by means of floating trees, or those floating islands which are often formed at the mouths of great rivers. Sir Charles Lyell describes such floating islands which were encountered among the Moluccas, on which trees and shrubs were growing on a stratum of soil which even formed a white beach round the margin of each raft. Among the Philippine Islands similar rafts with trees growing on them have been seen after hurricanes; and it is easy to understand how, if the sea were tolerably calm, such a raft might be carried along by a current, aided by the wind acting on the trees, till after a passage of several weeks it might arrive safely on the shores of some land hundreds of miles away from its starting-point. Such small animals as squirrels and field-mice might have been carried away on the trees which formed part of such a raft, and might thus colonise a new island; though, as it would require a pair of the same species to be thus conveyed at the same time, such accidents would no doubt be rare. Insects, however, and land-shells would almost certainly be abundant on such a raft or island, and in this way we may account for the wide dispersal of many species of both these groups.

Notwithstanding the occasional action of such causes, we cannot suppose that they have been effective in the dispersal of mammalia as a whole; and whenever we find that a considerable number of the mammals of two countries exhibit distinct marks of relationship, we may be sure that an actual land connection, or at all events an approach to within a very few miles of each other, has at one time existed. But a considerable number of identical mammalian families and even genera are actually found in all the great continents, and the present distribution of land upon the globe renders it easy to see how they have been able to disperse themselves so widely. All the great land masses radiate from the arctic regions as a common centre, the only break being at Behrings Strait, which is so shallow that a rise of less than a thousand feet would form a broad isthmus connecting Asia and America as far south as the parallel of 60° N. Continuity of land therefore may be said to exist already for all parts of the world (except Australia and a number of large islands, which will be considered separately), and we have thus no difficulty in the way of that former wide diffusion of many groups, which we maintain to be the only explanation of most anomalies of distribution other than such as may be connected with unsuitability of climate.

The Dispersal of Birds.Wherever mammals can migrate other vertebrates can generally follow with even greater facility. Birds, having the power of flight, can pass over wide arms of the sea, or even over extensive oceans, when these are, as in the Pacific, studded with islands to serve as resting places. Even the smaller land-birds are often carried by violent gales of wind from Europe to the Azores, a distance of nearly a thousand miles, so that it becomes comparatively easy to explain the exceptional distribution of certain species of birds. Yet on the whole it is remarkable how closely the majority of birds follow the same laws of distribution as mammals, showing that they generally require either continuous land or an island-strewn sea as a means of dispersal to new homes.

The Dispersal of Reptiles.Reptiles appear at first sight to be as much dependent on land for their dispersal as mammalia, but they possess two peculiarities which favour their occasional transmission across the seathe one being their greater tenacity of life, the other their oviparous mode of reproduction. A large boa-constrictor was once floated to the island of St. Vincent, twisted round the trunk of a cedar tree, and was so little injured by its voyage that it captured some sheep before it was killed. The island is nearly two hundred miles from Trinidad and the coast of South America, whence the reptile almost certainly came.14 Snakes are, however, comparatively scarce on islands far from continents, but lizards are often abundant, and though these might also travel on floating trees, it seems more probable that there is some as yet unknown mode by which their eggs are safely, though perhaps very rarely, conveyed from island to island. Examples of their peculiar distribution will be given when we treat of the fauna of some islands in which they abound.

The Dispersal of Amphibia and Fresh-water Fishes.The two lower groups of vertebrates, Amphibia and fresh-water fishes, possess special facilities for dispersal, in the fact of their eggs being deposited in water, and in their aquatic or semi-aquatic habits. They have another advantage over reptiles in being capable of flourishing in arctic regions, and in the power possessed by their eggs of being frozen without injury. They have thus, no doubt, been assisted in their dispersal by floating ice, and by that approximation of all the continents in high northern latitudes which has been the chief agent in producing the general uniformity in the animal productions of the globe. Some genera of Batrachia have almost a world-wide distribution; while the tailed Batrachia, such as the newts and salamanders, are almost entirely confined to the northern hemisphere, some of the genera spreading over the whole of the north temperate zone. Fresh-water fishes have often a very wide range, the same species being sometimes found in all the rivers of a continent. This is no doubt chiefly due to the want of permanence in river basins, especially in their lower portions, where streams belonging to distinct systems often approach each other and may be made to change their course from one to the other basin by very slight elevations or depressions of the land. Hurricanes and water-spouts also often carry considerable quantities of water from ponds and rivers, and thus disperse eggs and even small fishes. As a rule, however, the same species are not often found in countries separated by a considerable extent of sea, and in the tropics rarely the same genera. The exceptions are in the colder regions of the earth, where the transporting power of ice may have come into play. High ranges of mountains, if continuous for long distances, rarely have the same species of fish in the rivers on their two sides. Where exceptions occur, it is often due to the great antiquity of the group, which has survived so many changes in physical geography that it has been able, step by step, to reach countries which are separated by barriers impassable to more recent types. Yet another and more efficient explanation of the distribution of this group of animals is the fact that many families and genera inhabit both fresh and salt water; and there is reason to believe that many of the fishes now inhabiting the tropical rivers of both hemispheres have arisen from allied marine forms becoming gradually modified for a life in fresh water. By some of these various causes, or a combination of them, most of the facts in the distribution of fishes can be explained without much difficulty.

The Dispersal of Insects.In the enormous group of insects the means of dispersal among land animals reach their maximum. Many of them have great powers of flight, and from their extreme lightness they can be carried immense distances by gales of wind. Others can survive exposure to salt water for many days, and may thus be floated long distances by marine currents. The eggs and larvæ often inhabit solid timber, or lurk under bark or in crevices of logs, and may thus reach any countries to which such logs are floated. Another important factor in the problem is the immense antiquity of insects, and the long persistence of many of the best marked types. The rich insect fauna of the Miocene period in Switzerland consisted largely of genera still inhabiting Europe, and even of a considerable number identical, or almost so, with living species. Out of 156 genera of Swiss fossil beetles no less than 114 are still living; and the general character of the species is exactly like that of the existing fauna of the northern hemisphere in a somewhat more southern latitude. There is, therefore, evidently no difficulty in accounting for any amount of dispersal among insects; and it is all the more surprising that with such powers of migration they should yet be often as restricted in their range as the reptiles or even the mammalia. The cause of this wonderful restriction to limited areas is, undoubtedly, the extreme specialisation of most insects. They have become so exactly adapted to one set of conditions, that when carried into a new country they cannot live. Many can only feed in the larva state on one species of plant; others are bound up with certain groups of animals on whom they are more or less parasitic. Climatal influences have a great effect on their delicate bodies; while, however well a species may be adapted to cope with its enemies in one locality, it may be quite unable to guard itself against those which elsewhere attack it. From this peculiar combination of characters it happens, that among insects are to be found examples of the widest and most erratic dispersal and also of the extremest restriction to limited areas; and it is only by bearing these considerations in mind that we can find a satisfactory explanation of the many anomalies we meet with in studying their distribution.

Назад Дальше