Основы физиологии сердца - Тамара Леонидовна Рудакова 7 стр.


Измерения, выполненные с помощью микроэлектродной техники, показали, что величина мембранного потенциала покоя сократительных кардиомиоцитов составляет около  90 мВ, то есть практически полностью соответствует таковой, рассчитанной по уравнению Нернста. Следовательно, во время диастолы именно выходящий калиевый ток (IK+1) и является определяющим в формировании мембранного потенциала покоя сократительных кардиомиоцитов.

В формировании мембранного потенциала покоя клеток является значимым и ионный ток, создаваемый К+/Nа+насосом. При работе последнего обмен ионов не эквивалентен (на каждые 2 иона К+, введенных в клетку, переносится наружу 3 иона Na+). В результате на мембране возникает дополнительный выходящий из клетки ток положительно заряженных ионов натрия «насосный ток», который увеличивает отрицательный внутриклеточный заряд примерно на 10 мВ. Активность К+/Nа+ АТФ-азы и величина насосного тока зависят от изменений концентрации ионов, усиливаясь при увеличении внеклеточной концентрации ионов К+ и внутриклеточной концентрации ионов Na+. Следовательно, при увеличении внеклеточной концентрации калия будет усиливаться активный перенос калия внутрь клетки, в результате чего концентрация калия внутри клетки будет возрастать. В соответствии с уравнением Нернста, отрицательный мембранный потенциал покоя в этих условиях увеличится (гиперполяризация мембраны), что может привести к остановке сердца в диастолу. Вот почему в организме человека и теплокровных животных концентрация калия и натрия в плазме крови поддерживается на постоянном уровне (водно-электролитный баланс). При необходимости применения препаратов калия в клинической практике, например в случае желудочковой экстрасистолии, внутривенное введение калийных растворов должно производиться капельно, медленно при контроле изменений электрокардиограммы.

Несколько ионных токов вносят вклад в медленную диастолическую деполяризацию, которая характерна для клеток водителей сердечного ритма, обладающих автоматией. В клетках синоатриального узла медленную диастолическую деполяризацию опосредуют три ионных тока: входящий ток Na, If, вызванный гиперполяризацией; входящий Ca2+-ток, ICa; и выходящий K+-ток, IK.

В возникновении потенциала действия, или спайка (англ. spike острие), клеток водителей ритма основная роль принадлежит входящему току ионов Са2+, а в сократительных кардиомиоцитах Nа+. Сила данных токов зависит от степени открытия потенциалзависимых ионных каналов, которая особенно возрастает при достижении мембраной порогового потенциала, или критического уровня деполяризации. Этот уровень в клетках водителях ритма достигается в результате спонтанной диастолической деполяризации. Поскольку скорость последней в пейсмекерах синоатриального узла выше, чем в кардиомиоцитах атриовентрикулярного соединения и проводящей системы желудочков, то в норме эти клетки возбуждаются не спонтанно, а лишь под влиянием импульсов, поступающих от синоатриального узла. В сократительных кардиомиоцитах в норме спонтанная диастолическая деполяризация отсутствует, и поэтому достижение критического уровня деполяризации возможно только после проведения к ним по проводящей системе импульсов от синусового узла. Однако пусковыми стимулами для возбуждения сократительных кардиомиоцитов могут явиться и внешние электрические импульсы, получаемые от искусственных водителей ритма (кардиостимуляторов), а также механическое раздражение, например сильный удар в область грудины при остановке сердца или же прямой его массаж при вскрытой грудной клетке в условиях клиники.

При достижении мембраной кардиомиоцитов критического уровня деполяризации количество открытых ионных каналов резко возрастает, мембрана еще более деполяризуется, что приводит к еще большему открытию ионных каналов. Иными словами, возникает положительная обратная связь: «деполяризация открытие ионных каналов усиление входящего тока возрастание деполяризации». В результате возникает лавинообразный, самоподдерживаемый процесс усиления входящего тока положительно заряженных ионов в клетку. Этот ток не только уменьшает отрицательный заряд мембраны, но и перезаряжает ее до положительных значений, то есть вызывает реверсию потенциала, или овершут (англ. overshoot  перелет). Однако на этом фоне каналы входящего тока натрия и кальция начинают закрываться, и его сила уменьшается, тогда как выходящий ток (ионов калия), напротив, усиливается. В результате положительная величина мембранного потенциала уменьшается до нуля, и в дальнейшем вновь происходит перезарядка мембраны клетки до отрицательных значений, то есть мембранный потенциал возвращается к диастолическому уровню. Таким образом, взаимодействие входящего и выходящих ионных токов формирует потенциал действия кардиомиоцитов.

В 1975 г. П. Крейнфилд предложил классифицировать кардиомиоциты по скорости развития фазы деполяризации потенциала действия на клетки с медленным и быстрым ответом. Соответственно, в сердце можно выделить два основных типа потенциалов действия быстрый и медленный ответы.

Клетки с медленным ответом представлены в основном пейсмекерными клетками синоатриального узла и атриовентрикулярного соединения, а также специализированными клетками проводящей системы.

К клеткам с быстрым ответом относятся все сократительные кардиомиоциты, а также проводящие кардиомиоциты предсердий и некоторые элементы проводящей системы желудочков (волокна Пуркинье).

В «медленных» клетках в возникновении, а также поддержании потенциала действия основное участие принимает входящий через кальциевые каналы L-типа медленный ток I Ca2+L. В возникновении же потенциала действия клеток с быстрым ответом ведущая роль принадлежит входящему натриевому току I Na+, протекающему через быстрые натриевые каналы. Однако для поддержания длительной (250300 мс) деполяризации мембраны в клетках с быстрым ответом необходимы также активация кальциевых каналов L-типа и возникновение входящего тока I Ca2+L. Блокада указанных каналов приводит к тому, что потенциал действия «быстрых» клеток становится коротким по продолжительности и сопоставим с таковым в скелетных мышцах (1020 мс). Рассмотрим более подробно фазы потенциала действия «медленных» и «быстрых» клеток.

Клетки с медленным ответом. Для этого типа кардиомиоцитов характерны меньшая амплитуда потенциала действия и скорость его распространения по сравнению с «быстрыми» клетками. Фазы деполяризации и реполяризации потенциала действия «медленных» клеток протекают более плавно, чем в «быстрых» клетках (рис. 4).

Фаза быстрой деполяризации (0) характеризуется небольшой по сравнению с «быстрыми» клетками скоростью (до 20 В/с) нарастания и обеспечивается входящим током I Са2+L. Пороговый потенциал, при котором активируется достаточное для обеспечения этого тока количество Са2+

Назад