Так как компьютер понимает только машинный язык, то и программы для него должны так же быть на машинном языке. Однако реализация этого весьма трудоёмка. Поэтому вначале программы писались на языке близком к машинному так называемый АВТОКОД или АССЕМБЛЕР.
Сейчас программы на АССЕМБЛЕРЕ используют, когда надо достичь максимального быстродействия и минимального размера.
Сегодня применяются языки более понятные программисту: Паскаль, Си++, Ява, Дельфи и т. д. Однако они требуют преобразования в язык машины. Это делается с помощью специальных программ, называемых трансляторами или компиляторами, с помощью которых исходные файлы программ, написанных на языке высокого уровня, преобразуются в исполнительные файлы (с расширением EXE или COM). Поэтому языки ассемблера и другие машинно-ориентированные языки называются языками низкого уровня, остальные высокого уровня.
Вся информация в ПК хранится в каталогах и подкаталогах в виде папок и вложенных в них или отдельно файлов. Каталог упорядоченное хранение файлов. Папка хранит несколько файлов, количество которых не ограничено. Файл отдельная информация (текст, программы и т.д.), имеющая расширение: EXE, TXT, COM, SIS и т.д., в зависимости от содержания файла.
Архитектура компьютера
Персональный компьютер сложное устройство, состоящее в основном из электронных блоков, установленных в корпусе и связанных между собой шлейфами кабелей так называемая аппаратная часть. Однако, кроме того, компьютер имеет и интеллектуальную часть программное обеспечение или логическую часть. Поэтому, говоря об устройстве компьютера, всегда надо различать его аппаратную часть и его программную часть (логическую). Рассмотрим вначале его аппаратную часть.
Компьютер это комплекс взаимосвязанных электронных устройств, каждому из которых поручена определенная функция (рис. 2). Этот комплекс называют конфигурацией или архитектурой ПК. Конкретный ПК может работать с разным набором внешних устройств. Но существует «минимальная» конфигурация, без которой работа на ПК становится невозможной.
Различают системный блок (рис. 3) и внешние устройства ПК. К внешним устройствам относят монитор, клавиатуру, мышь и все остальные устройства, например, модем, принтер, сканер.
Рисунок 2 Схематическая схема современного ПК
Системный блок
Системный блок (заключенные в металлический корпус основные электронные элементы ПК) чаще всего содержит:
¨ системную (материнскую) плату с процессором, микросхемы памяти, генератор тактовых импульсов, системную магистраль, контроллеры (адаптеры) внешних устройств, слоты разъёмы для подключения контроллеров;
¨ звуковые и видеокарты;
¨ накопитель на жестких дисках;
¨ накопитель на гибких дисках;
¨ дисководы;
¨ блок питания.
Рисунок 3 Системный блок
Процессор (микропроцессор) это центральное устройство компьютера («мозг» машины). Проводит вычисления и управляет работой всех устройств. Процессоры различаются между собой по типу модели и характеристикам. Основные модели процессоров IBM совместимых компьютеров:
¨ 1974 г. 8-разрядный процессор 8080 (4800 транзисторов, 75 команд, 64 Кбайта памяти);
¨ 1978 г. 16-разрядный процессор 8086 ХТ (1 миллион операций в секунду (млн. оп/с), 4,7710 МГц);
¨ 1982 г. 80286 РС (12 млн. оп/с, 625 МГц);
¨ 1986 г. 80386 32-разрядный (612 млн. оп/с, 1633 МГц);
¨ 1990 г. 80486 (2040 млн. оп/с, 2550 МГц);
¨ 1993 г. Pentium 32- разрядный (120200 млн. оп/с, 60 МГц, 3 миллиона транзисторов);
¨ 1995 г. Pentium РRO (300 млн. оп/с, 150 200 МГц);
¨ 1997 г. Pentium II (233 450 МГц);
¨ 2000 г. Pentium III (566 1000 МГц);
¨ Pentium IV (1400 1700 МГц и более, 42 миллиона транзисторов).
В последнее время фирмой Intel разрабатываются процессоры Itanium, имеющие более высокие характеристики. Их главная особенность 64 разрядная внутренняя архитектура. В настоящее время процессоры Itanium, Itanium 2 используются в мощных серверах. Эти процессоры требуют специального программного обеспечения. Фирма Intel выпускает также процессоры типа Celeron, несколько дешевле первых.
Кроме фирмы Intel в создании процессоров участвуют и другие фирмы AMD (AMD, Athlon, Duron), Cyrix, VIA, IBM и т.п., характеристики выпускаемых процессоров которых тоже достаточно высоки, а цены несколько ниже.
Главные характеристики процессора
Тактовая частота или быстродействие количество информации, обрабатываемой за секунду, которая указывает, сколько элементарных операций (тактов) микропроцессор выполняет за одну секунду.
Такт это промежуток времени между началом подачи текущего импульса и началом подачи следующего. На выполнение процессором каждой операции отводится определенное количество тактов. Тактовая частота измеряется в мегагерцах (МГц). Герц единица измерения частоты колебаний, равняется одному колебанию в секунду. МГц это миллионы герц, миллион колебаний в секунду, миллион операций в секунду.
Разрядность максимальное количество информации, которое может обрабатываться или передаваться процессором одновременно количество обрабатываемых бит информации как единое целое (4, 8, 16, 32, 64). Бывают процессоры, имеющие 8 разрядов, 16, 32 и даже более (исходя из целей, которые преследуются при работе на данных ЭВМ).
Память
Информация, обрабатываемая в ЭВМ, сохраняется в памяти. Различают оперативную память и долговременную память. Оперативная память это рабочая область процессора, которая создаётся и используется при работе ПК и освобождается при его выключении. Долговременная память не стирается при работе и хранится на специальных внутренних или внешних накопителях жёстких и гибких дисках (дискетах).
Оперативная память
Оперативную память можно подразделить на непосредственно оперативное запоминающее устройство (ОЗУ), и кэш-память (Cache memory) сверхоперативную память, которая устанавливается между процессором и ОЗУ. Предназначена для хранения наиболее часто используемых участков ОЗУ, т.е. это часть оперативной памяти. Так как время доступа к кэш-памяти в несколько раз меньше, чем к обычной, то вначале процессор ищет необходимые данные в кэш-памяти, а потом уже в остальной.
Физически оперативная память выполняется в виде специальных микросхем, которые вставляются в гнёзда расположенные на плате материнской платы.
Долговременная память
К устройствам долговременной памяти относятся жёсткий диск (винчестер), гибкие диски, компакт-диски, флэшь и постоянное запоминающее устройство (ПЗУ).
Чаще всего в качестве долговременных накопителей информации используют твёрдые диски HDD (Hard Disk) или гибкие FFD (Floppy). При чтении и записи диск вращается в дисководе относительно своей оси, для чего имеется электродвигатель. Гибкие диски вращаются только при чтении записи и по завершении этих процессов двигатель отключается. Скорость вращения 6 об/с. Жесткие диски вращаются постоянно, со скоростью от 60 до 120 об/с. Чем больше обороты диска, тем быстрее считывается информация. В целом скорость работы диска зависит от его контроллера, типа шины, быстродействия процессора.
У гибких дисков магнитный слой нанесен на лавсановую основу. Применяются для перенесения информации с одного ПК на другой. Для хранения информации применяются все реже мала ёмкость. 3,5 дюймовые дискеты различаются по ёмкости информации, чаще всего сейчас используется 1,44 Мбайта. Каждая дискета имеет защиту от записи небольшую прорезь в виде квадратика в углу с защёлкой. Если отверстие закрыто, то запись разрешена, открыто запрещена.
Накопители на жестком диске (винчестеры) предназначены для хранения большого объема информации длительное время, в том числе и программ операционной системы.
Выполняются из алюминиевого диска или нескольких дисков, покрытых ферромагнитным материалом. Диски приводятся во вращение электродвигателями с большой скоростью.
Основные характеристики жесткого диска ёмкость в Гбайтах и скорость работы диска. Ёмкость современных HDD до 100 и выше Гигабайт. Скорость работы диска это скорость доступа к информации.
Принцип действия этих дисков следующий. На гибкую или жесткую основу наносится ферромагнитный слой ферромагнетик, материал, имеющий доменную структуру. Магнитная ориентация доменных областей хаотична. При специальном намагничивании эти домены (области однонаправленной магнитной ориентации) приобретают одно направление, и это направление остается очень долго, до тех пор, пока их не перемагнитят. Поэтому эти носители информации боятся воздействия магнитных полей.
Намагничивание части носителя производится с помощью специальных головок чтения-записи.