Исследование и оценка параметров сигналов в распределенных информационных системах. Для студентов технических специальностей - Геннадий Федорович Вильдяйкин 3 стр.


Это волновое уравнение второго порядка для давления, где с  скорость звука.

Если записать выражение для давления гармонического колебания волн и затем подставить его в волновое уравнение (2.7), то получим волновое уравнения Гельмгольца (2.8).


Математическая модель электромагнитного поля

Математическая модель электромагнитного поля представляет систему уравнений электромагнитного поля в полном виде или систему уравнений Максвелла [4].

Электромагнитное поле характеризуются следующими векторными величинами: E и H  векторы напряженности электрического и магнитного полей, D и B  векторы электрической и магнитной индукции, I и Im  плотность токов электрической и магнитной проводимости, ρ и ρm  плотность электрических и магнитных зарядов.

Дифференциальная форма системы уравнений выглядит (3.1  3.7), где  магнитная проницаемость,  диэлектрическая проницаемость,  удельная проводимость

Эти уравнения будут исходными при рассмотрение переменных электромагнитных полей и процессов.

Первое уравнение Максвелла. является дифференциальной формулировкой закона полного тока. Физический смысл 1-го уравнения Максвелла: источниками вихревых магнитных полей являются токи проводимости и токи смещения.

Величина δ в правой части (3.1) есть плотность тока проводимости. Это вектор, указывающий направление движения зарядов.

Законы электромагнетизма  это законы макроскопических процессов, в которых усредняется действие огромных количеств элементарных частиц материи. С точки зрения этих законов, среда представляется сплошной.

Второе уравнение Максвелла (3.2) является дифференциальной формулировкой закона электромагнитной индукции и выражает скорость изменения магнитной индукции В через пространственную производную (rot) напряженности электрического поля Е.

Физический смысл: вихревое электрическое поле создается переменным магнитным полем

Третье уравнение Максвелла является дифференциальной формулировкой теоремы Гаусса для электрических полей. Физический смысл: источниками электрического поля (векторов Е и D) являются заряды с плотностью ρ. Дифференциальные уравнения (3.3) показывает, что расходимость электрической индукции равна объемной плотности заряда.

Четвертое уравнение Максвелла является дифференциальной формулировкой теоремы Гаусса для магнитных полей. Физический смысл. Дивергенция вектора В в любой точке пространства равняется нулю, т.е.  источников нет (магнитные заряды в природе отсутствуют). Нет ни стыков, ни источников. Линии магнитной индукции непрерывны.

Из уравнений (3.1) и (3.3) можно прийти к уравнению (3.8).

Это уравнение непрерывности. Закон сохранения заряда.

Уравнения (3.5), (3.6), (3.7) характеризуют связь векторов поля с материальной средой.

Установим волновой характер ЭМП. При распространении ЭМП с конечной скоростью происходит запаздывание его по фазе, результатом чего является волновой характер распространения. Можно записать первые два уравнения Максвелла в комплексной форме и заменить в них индукции B и D напряженностями rot E и rot H и ввести функцию комплексной диэлектрической проницаемости проводящей среды при монохроматическом поле. Затем получится полная система уравнений монохроматического ЭМП с комплексными проницаемостью и напряженностями E и H. Волновой характер ЭМП этого гармонического во времени процесса в области без источников получается, если исключить вектор E или вектор H из в уравнениях (3.1) и (3.2), применив оператор rot и учитывая, что расходимость (div) вектора H = 0.

Для однородной непроводящей среды волновое уравнение переходит в уравнение Гельмголца, которое запишется в уравнения (3.9  3.10), где k = ω εμ  волновое число.


Об аналогии описания физических полей

Из рассмотренных математических моделей физических полей микромира видно, что гравитационное, акустическое и электромагнитное поля описываются при определенных условиях волновыми уравнениями (1.9, 2.7, 2.8, 3.9, 3.10). Мы имеем ситуацию, когда различные физические явления (поля) описываются аналогичными дифференциальными и другими уравнениями. То есть между физическими явлениями существует аналогия, которая основывается на сходстве уравнений, лежащих в основе описания данных физических явлений

Аналогия ЭМП и акустического поля.

Например, акустические волны описываются уравнениями Гельмгольца (2.8). Электромагнитные волны описываются уравнениями Максвелла, которые после соответствующих преобразований также переходят в уравнения Гельмгольца для однородной среды (3.9). Т.е. в двумерном случае уравнения Максвелла сводятся к двум независимым уравнениям для векторов напряженности электрического и магнитного полей (4.1  4.2).

Такие же уравнения можно записать для каждой из составляющих векторов вдоль осей x, у, z. В результате для каждой составляющей получаем уравнение Гельмгольца. Поэтому в двумерном случае решения акустических и электромагнитных задач совпадают. Однако при сопоставлении решений задач необходимо привести в соответствие и граничные условия. Рассмотрим примеры [5].

При абсолютно мягкой поверхность (для ЭМП-абсолютная проводящая поверхность и для АПдавление на поверхности равно нулю), если электромагнитная волна, падающая на поверхность имеет Е-поляризацию (вектор Е параллелен оси y),решениедля вектора Е полностью переносится на величину звукового давления р для абсолютно мягкой поверхности.

При абсолютно жесткой поверхности решение для вектора H, поляризованного параллельно образующей оси y, переносится на величину звукового давления p для абсолютно жесткой поверхности.

Промежуточный случай для электромагнитных волн, когда векторы E и H не параллельны границам раздела, распадается на два рассмотренных случая.

Задача об отражение звуковых волн от плоской границы раздела двух различных сред аналогична задаче об отражения ЭМВ от плоской границы двух диэлектрических сред. Было получено, что аналогом звукового давления р в рассматриваемой задаче будет Еу, а аналогом нормальной составляющей колебательной скорости Vz  величина Нх. Выражение, определяющее коэффициент отражения для вектора E=Еу, будет аналогично формуле для коэффициента отражения звуковой волны (по давлению).

Для акустических волн сохраняется известный закон преломления в оптическом диапазоне ЭМВ. Сохраняются также другие закономерности.

В трехмерном случае за редким исключением векторные уравнения Максвелла не сводятся к скалярным, и найти решения для электромагнитных волн, которые бы соответствовали и звуковым волнам, невозможно. Однако несоответствие между решениями акустических и электромагнитных задач постепенно уменьшается при увеличении волнового размера тела.

Поэтому все результаты, полученные в теории излучения электромагнитных волн, остаются справедливыми и в акустическом случае.


Аналогия ЭМП и гравитационного поля

В математической модели гравитационное поле описывается уравнениями (1.9 и 1.10). Покажем, что это уравнение аналогично уравнению Максвелла для электростатического поля. Так как задача определения потенциала гравитационного поля и силы, действующей со стороны поля на пробную единичную массу, может быть поставлена как задача об определении функции Φ (х,у,z), исчезающей в бесконечности и удовлетворяющей уравнению Лапласа всюду вне V и уравнению Пуассона всюду внутри V, или как задача определения сил F, удовлетворяющих уравнениям (1.8) и (1.10). Такого рода постановка задачи в теории ньютоновского потенциала полностью аналогична постановке задачи электростатики на основе уравнений Максвелла. Можно показать, что решение в бесконечном пространстве задачи об отыскании функции Φ (х,у,z) исчезающей в бесконечности, приводит к формуле (1.7), выражающей собой закон гравитационного тяготения.

Векторной характеристикой гравитационного поля является его напряженность  силовая характеристика точки поля тяготения, равная отношению силы тяготения F, действующей на помещенную в него материальную точку к массе этой точки m.

Предположение о существовании гравитационных волн есть один из вариантов решения уравнений Эйнштейна.

Существование электромагнитных волн также было результатом одного из возможных решений уравнений Максвелла (переменное движение электрических зарядов и переменные электрические токи являются источниками электромагнитных волн).

Точно также считается, что переменное движение массы приводит к излучению гравитационных волн. В настоящее время гравитационные волны определяют как переменное гравитационное поле, распространяющееся со скоростью света и проявляющееся в возникновении относительных ускорений тел.

Назад Дальше