Методы проектирования онлайн-курсов. teachers.land - Анна Петровна Авраменко


Методы проектирования онлайн-курсов

teachers.land


Анна Петровна Авраменко

© Анна Петровна Авраменко, 2019


ГЛАВА 1. Дополненная среда обучения

#background

Благодаря мобильным устройствам с беспроводным подключением к Интернету (планшетам, смартфонам, смарт-часам и т.д.), каждая аудитория сегодня становится «дополненной», а интеграция информационно-коммуникационных технологий (ИКТ) происходит не только в заочной (дистанционной) и очно-заочной (смешанной) формах обучения, но и в очной (традиционной) форме. За последние полтора десятилетия педагоги и методисты со всего мира предложили огромное количество решений для проблемы, сформулированной на заре интеграции технологий в образовательный процесс: необходимости в разработке моделей использования инновационных инструментов в различных курсах, в том числе по иностранным языкам. Тем не менее, до сих сохраняется огромный пробел между теми возможностями, которые мы имеем благодаря современным устройствам, и нехваткой апробированных теорий и форматов заданий, направленных на формирование компетенций [Авраменко, Матвеева, 2019].

Дополненная реальность (Augmented Reality, AR) является одним из двух компонентов так называемой смешанной или гибридной реальности (Mixed Reality, MR), которую определяют как « все между крайностями виртуального континуума» [Milgram, 1994, c. 1322]. В конце ХХ века Пол Милграм и Фумио Кишино предложили шкалу уровней интеграции виртуальных элементов в человеческую реальность: от чистой окружающей среды к дополненной реальности, и далее от дополненной виртуальности (Augmented Virtuality, AV) к виртуальной реальности (Virtual Reality, VR).

Отличие дополненной реальности от дополненной виртуальности заключается в следующем. Если в дополненной реальности цифровые элементы привязаны к окружающей пользователя реальности, то в дополненной виртуальности, напротив, элементы реального мира лишь внедряются в виртуальный. Иными словами, дополненная реальность максимально адаптирует виртуальные элементы к реальным контекстам и именно поэтому представляется перспективной для применения в том числе и в образовательном контексте. Таким образом, можно определить дополненную реальность как совокупность реальных и виртуальных элементов в определенное время в конкретном месте [Azuma, 1997].

В образовательном контексте элементы дополненной реальности раскрывают широкий дидактический потенциал как средство обучения, способствуя реализации современных подходов и методов, а также достижению новых целей. Это объясняется тем, что дидактические свойства дополненной реальности включает в себя аутентичность, мультимедийность и персонифицированность. Данные свойства определяют дидактические функции инструментов дополненной реальности: доступ к материалам, организацию учебного процесса (пространства и времени), учебную интеракцию, индивидуализацию и визуализацию. Более того, приведенные функции осуществляются в игровом формате, что соотносится с социальным заказом общества на геймификацию учебного процесса. На практике описанный выше дидактический потенциал реализуется в проблемно-поисковых и творческих заданиях (форматов веб квест, кейс, ролевые игры и т.д.).

Во второй половине ХХ века с большим или меньшим успехом начинают появляться примеры реализации виртуальной реальности такие, как устройство Сенсорама (Sensorama by M. Heiling), лаборатория Видеоплейс (Videoplace by M. Krueger) и т. д. Первой же иллюстрацией дополненной реальности служит не игровой, но рабочий инструмент  это Цифровой стол (Digital Desk by P. Wellner). Изобретение Пьера Велнера позволило добавить к печатному тексту на рабочее место электронные документы, на которые можно было с помощью закрепленных над столом камер мгновенно сканировать информацию, обрабатывать ее посредством формул заложенных в процессор и отправлять новые документы на печать [Wellner, 1993]. Дальнейшая разработка данного устройства продолжалась вплоть до начала ХХI века, когда к функциям была добавлена обратная связь (Proactive Desk) [Noma, 2003].

Параллельно с рабочими инструментами дополненной реальности на рубеже веков появляется платформа ARToolKit, которая и по сей день является одним из наиболее популярных порталов дополненной реальности с постоянно обновляющимся программным обеспечением для проектирования приложений дополненной реальности с элементами 3D, интерактивностью и использованием геолокационных данных.

В первом десятилетии XXI века три основные тенденции развития технологий влияют на применение ИКТ в преподавании:

 Во-первых, массовое увлечение компьютерными играми в виртуальных мирах раскрывает перед разработчиками учебного контента возможность визуализировать его с помощью 3D моделирования (например, в Second Life).

 Во-вторых, появление инструментов Веб 2.0 ведет к расширению учебной интеракции в дистанционном и смешанном образовании (в том числе во внеклассной и внеаудиторной работе). К ним относятся надстройки коммуникативных сервисов (блогов, вики, социальных сетей и т.д.) к Всемирной паутине  World Wide Web, состоявшей изначально только из веб-страниц, веб-сайтов и серверов как хранилища данных на технологии Интернет, по задумке ее изобретателя Тима Бернеса-Ли.

 Наконец, распространение мобильных устройств и беспроводного Интернета приводит к появлению огромного количества мобильных геймифицированных учебных приложений в рамках популярной на тот момент тенденции на мобильное обучение преимущественно в контексте самостоятельного обучения. В течение последних лет бесспорными лидерами рынка мобильных приложений в изучении иностранных языков остаются Busuu, Duolingvo, Babbel, а также LinguaLeo и Skyeng на отечественном рынке.

В настоящее время слияние вышеперечисленных факторов определяет вектор развития образовательных ресурсов в дополненной реальности, что предполагает разработку интерактивного игрового контента в формате 3D с привязкой к геолокации. Подобные образовательные ресурсы представляют из себя базовый учебно-методический комплекс (УМК), включающий в себя на одной странице или в одном приложении все средства обучения.

Более того, можно прогнозировать открытый характер большинства данных ресурсов, обусловленный новым уровнем развития Всемирной паутины (Веб 3.0), а именно надстройки к уже имеющимся коммуникативным сервисам семантических технологий поиска, которые дают возможность пользователю получать профессиональные ответы по своим запросам вместо наиболее популярных сайтов по ключевым словам. Возможность получения качественной информации в открытом доступе от профессионалов в различных сферах стимулирует учебные заведения делиться контентом посредством массовых открытых онлайн курсов (Massive Open Online Courses, MOOCs) и открытых образовательных ресурсов (ООР) [Титова, 2016].

Изначально несколько лет назад в широкий доступ поступила система Siri от корпорации Apple, работающая по данному принципу. Сейчас на российском рынке появился отечественный аналог Алиса от Яндекс. Что касается Google, то нельзя не обратить внимание на определяющую роль корпорации как флагмана тенденций развития технологий вообще, и дополненной реальности в частности. Не только семантический поиск и поиск по визуальной наглядности (Google Goggles) интегрированы в самый популярный поисковик, но и не меньшую популярность имеют геолокационные приложения дополненной реальности (Google Expeditions).

В настоящее время, согласно международным и национальным образовательным стандартам, одной из центральных целей обучения в вузе становится развитие профессиональной и метапредметных компетенций студентов [Назаренко, 2018]. Ключевыми компонентами данной компетенции являются навыки и умения работы с информацией, работы в команде, обучения через всю жизнь, критического мышления и т. д. Одновременно в обновленном документе «Общеевропейские компетенции владения иностранным языком» основной акцент делается на владение дискурсивной, стратегической и социокультурной компетенциями как ключевыми компонентами коммуникативной [CEFR, 2018].

Формирование перечисленных знаний, умений и навыков (ЗУН), а также компонентов компетенций требует организации учебного процесса в рамках интеграционного подхода, в основе которого лежат такие принципы, как:

 Междисциплинарность

 Коммуникативность

 Интерактивность

 Визуацизация

 Персонификация

В образовательном контексте элементы дополненной реальности раскрывают широкий дидактический потенциал как средство обучения, способствуя реализации современных подходов и методов, а также достижению новых целей. Это объясняется тем, что дидактические свойства дополненной реальности включают в себя аутентичность, мультимедийность и интерактивность. Данные свойства определяют дидактические функции инструментов дополненной реальности: доступ к материалам, организацию учебного процесса (пространства и времени), учебную интеракцию и индивидуализацию. Более того, приведенные функции осуществляются в игровом формате, что соотносится с социальным заказом общества на геймификацию учебного процесса [Liu, 2016].

Дальше