Любопытно, что ещё в 17м веке выдающийся математик и физик, Лейбниц, высказал созвучную с принципом Маха мысль: «Вселенная это взаимосвязанное целое».
Альберт Эйнштейн неоднократно подчеркивал /20/, что принцип Маха сыграл немаловажную роль при создании общей теории относительности, в рамках которой все существующие материальные тела (от небольших объектов до галактик) постоянно взаимодействуют посредством своих гравитационных полей, заполняющих всю Вселенную.
Принцип Ле Шателье декларирует, что все системы в природе противятся каким-либо изменениям, к которым их вынуждают внешние воздействия. Т.е. при внешнем воздействии, выводящим систему из некоторого стационарного состояния, в системе возникают процессы, стремящиеся ослабить результаты этого воздействия.
Принцип наименьшего действия занимает в физике особое положение. Ему подчиняются все известные на сегодняшний день фундаментальные взаимодействия: электромагнитные, сильные, слабые и гравитационные. Из него следуют основные уравнения классической и квантовой механики, электродинамики, физики сплошных сред, квантовой теории поля, термодинамики и общей теории относительности (гравитации) /15, 21/. Согласно этому Принципу, все изменения в Природе должны быть такими, чтобы некоторая ее количественная характеристика (обычно связанная с энергией) оставалась (или, по крайней мере, стремилась остаться) минимальной. Принцип наименьшего действия, как бы говорит нам, что в Природе нет ничего лишнего, происходящие в ней процессы не дублируют друг друга, она экономна и для любой ее эволюции достаточно минимальных расходов энергии.
Принцип суперпозиции в общем случае утверждает, что при действии нескольких сил результат определяется их векторной суммой. В квантовой механике он отражает также тот факт, что объект может с определенной вероятностью находиться в различных состояниях, но только одно из них проявляется при соответствующем измерении. В принципе, также можно интерпретировать вероятность события в статистической механике и термодинамике.
Принцип относительности декларирует, что во всех системах материальных объектов, если они неподвижны или находятся в состоянии равномерного и прямолинейного движения, законы Природы одни и те же и физические процессы протекают одинаково, независимо от места расположения этих систем и времени их тестирования.
Все три Начала термодинамики являются аксиоматическими. Они не доказываются и основываются исключительно на экспериментальных фактах /16, 19/.
Первым Началом является Закон сохранения энергии, гласящий, что энергия не создается, не исчезает, а лишь переходит из одного вида в другой.
Второе Начало термодинамики утверждает, что называемая энтропией функция состояния изолированной термодинамической системы, выведенной из состояния равновесия под воздействием какого-либо необратимого процесса, всегда возрастает и определяет таким образом эволюцию системы
Третье Начало термодинамики (теорема Нернста) говорит, что при приближении температуры к абсолютному нулю (-273оС) энтропия равновесной системы не изменяется.
Следует отметить, что после введения Фарадеем и Максвеллом концепции электромагнитного поля в физику, а затем введения Эйнштейном гравитационного поля считается, что все электрически, магнитно, «гравитационно» или иным образом «заряженные» тела взаимодействуют посредством своих полей, каждое из которых представляет собой некую непрерывную среду, передающую «от точки к точке» силовое воздействие соответствующих зарядов друг на друга. Появление квантовой механики, а затем и ядерной физики внесло в концепцию поля существенное дополнение. Оказалось, что все физические поля состоят из квантов (фотонов, мезонов, еще не обнаруженных гравитонов, глюонов и других элементарных частиц), которые передают энергию поля между взаимодействующими объектами. Таким образом, появился «Корпускулярно-полевой дуализм»: с одной стороны, поле является сплошной средой, а с другой средой, состоящей из дискретных квантов энергии. Этот дуализм, в отличие от хорошо известного Корпускулярно-волнового дуализма (суть которого в том, что луч света, как и пучок элементарных частиц, скажем электронов, демонстрирует волновые свойства в опытах по интерференции и дифракции, а в опытах по рассеянию ведет себя, как поток частиц, т.е. фотонов или электронов), практически не обсуждается в научной литературе, хотя он присутствует там самым непосредственным образом.
Оба названных дуализма являются реализацией двух основополагающих принципов: Принципа дополнительности /22/ и Принципа эквивалентности /23/, которые можно попытаться обобщить на широкий круг явлений следующим образом:
В определенных экспериментах одно и то же качество материальных объектов, может проявляться принципиально различными способами, которые не могут реализовываться и наблюдаться одновременно.
В квантовой механике и теории поля это проявляет себя в явлениях интерференции и рассеяния, а в теории относительности в существовании гравитационной и инертной масс. В классической механике близкий к этому принцип работает во Втором законе Ньютона, где одно и то же качество проявляет себя либо как сила, либо как ускорение, а в Третьем законе Ньютона как действие и противодействие.
Для термодинамической системы таким качеством обладает изменение её свободной энергии, которое ответственно за эволюцию системы и может происходить либо путем энтропийных изменений, либо энтальпийных, либо и тех и других одновременно.
Корпускулярно-полевой формализм и перечисленные выше аксиоматические принципы будут применяться ко всем рассматриваемым в книге явлениям органического и неорганического мира. Такой подход основан на уверенности, что законы Природы являются общими для обоих миров, а органический мир лишь более организован, происходящие в нем процессы отличаются большей скоростью и поэтому он более изменчив и эволюционирует значительно быстрее мира неорганического.
Часть 1
Объяснение физических закономерностей Природы
I. Теоретические предпосылки применения термодинамического подхода к явлениям природы
1. Стохастичность и эволюция
«Необходимость прокладывает себе путь через множество случайностей».
Философская истина.
Объектом исследований в физике являются физические системы. Они состоят из материальных объектов. Когда физическая система (имеющая большое число степеней свободы), рассматривается как единое целое без привлечения характеристик составляющих ее объектов, ее называют термодинамической. К таким системам можно отнести твердые, жидкие и газообразные тела, отдельные макромолекулы, галактики, Вселенную. Любой объект живой природы, включая человека, также подходит под это определение.
Согласно Принципу Маха, все объекты Природы взаимосвязаны. Они оказывают друг на друга определенное влияние, независимо от разделяющего их расстояния. Т.е. они взаимодействуют. Удаленные объекты взаимодействуют слабее, соседние сильнее. Основной научной дисциплиной, описывающей взаимодействие материальных объектов является физика. В классической механике объекты взаимодействуют при непосредственном контакте. В электродинамике и общей теории относительности они воздействуют друг на друга посредством полей (электрического, магнитного, электромагнитного, гравитационного). В ядерной физике, квантовой механике и квантовой теории поля объекты взаимодействуют посредством квантов энергии, излучаемых в виде фотонов, глюонов, мезонов. Здесь работают сильные, слабые и электромагнитные взаимодействия. В термодинамике, статистической физике и квантовой механике, по сравнению с классической физикой, появляются дополнительные характеристики взаимодействия: термодинамические потенциалы, температура, свободная и внутренняя энергии, энтропия, волновая функция, а физические законы приобретают вероятностную (стохастическую) природу. Мы будем рассматривать, главным образом, термодинамические системы. Поэтому имеет смысл сразу дать определение их основных характеристик, упомянутых выше.
Под внутренней энергией Н термодинамической системы (часто называемой энтальпией) в контексте данной книги следует понимать энергию, включающую энергию массы покоя m0 системы, её кинетическую энергию mv2/2, количество тепла Q и энергию взаимодействия с силовым полем F, действующим в системе.
Свободная энергия G это часть внутренней энергии системы, которая может быть использована для совершения работы. Она равна разности внутренней энергии H и произведения температуры системы T в абсолютной шкале на характеристику системы, называемую энтропией s и отражающею её состояние и тенденцию к эволюции.