Задумайте два натуральных числа от 1 до 20. Найдите их сумму и произведение. Сообщите мне. Я отгадаю задуманные вами числа. Вам интересно, как я это сделаю?..
§2. Кто есть кто,
или Определение квадратного уравнения
Квадратным называется уравнение вида ax2 + bx + c = 0, где a, b, c некоторые заданные действительные числа, причём a 0, а x принимается за неизвестное.
Числа a, b, c называют так:
a старшим или первым коэффициентом,
b вторым,
c свободным или третьим1.
«Нумерация» коэффициентов зависит не от их реального месторасположения, а от того, при какой степени неизвестной они находятся. Например, число 2 будет первым коэффициентом в любом из трёх уравнений:
5x +2x2 7 = 0,
3 x +2x2 = 0,
2x2 +7x +5 = 0.
А вот число 5 в третьем уравнении является свободным коэффициентом, а в первом уравнении вторым коэффициентом.
То есть первый (старший) коэффициент это множитель при квадрате неизвестной, второй при первой степени. Свободный (третий) коэффициент это слагаемое без неизвестной, то есть «свободный от неизвестной».
Очевидно, что в качестве неизвестного необязательно брать букву x. Более того, привыкнув за школьные годы к этому неизменному обозначению, среднестатистический ученик начинает испытывать затруднения в восприятии (узнавании, интерпретации) квадратных уравнений, встречающихся при решении более сложных математических (физических и других) задач.
Собственно говоря, и коэффициенты квадратного уравнения не всегда могут обозначаться указанными выше буквами. Одним словом, квадратное уравнение имеет вполне определённую структуру, а как обозначаются элементы этой структуры дело десятое. Человек со сложившимся математическим стилем мышления понимает, что квадратным уравнением будет являться любое равенство, в правой части которого стоит ноль, а в левой сумма трёх слагаемых, одно из которых является произвольным числом, другое произведением произвольного числа на первую степень неизвестного и третье произведением ненулевого числа на вторую степень неизвестного.
Тогда квадратными будут уравнения:
mx2 + nx + k = 0 (относительно x, m 0),
xa2 + ya + z = 0 (относительно a, x 0).
Уравнение y2 + xy + x2 = 0 можно рассматривать как квадратное, но только либо относительно x, либо только относительно y.
Пока же договоримся, что теоретические вопросы будем излагать на привычных обозначениях.
Вернёмся к определению. Давайте выделим внешние, «бросающиеся в глаза», черты квадратного уравнения. Во-первых, наличие знака равенства. Отсутствие его с очевидностью снимает вопрос о правомерности называть объект уравнением.
(Любое ли равенство является уравнением разговор особый и не в рамках этой книги.)
Во-вторых, левая часть нашего равенства представляет собой алгебраическую сумму трёх слагаемых.
Возникает первый вопрос: обязательно трёх?
Другими словами количество слагаемых это определяющий признак или нет? Давайте посмотрим.
Значения второго и свободного коэффициентов квадратного уравнения в определении никак не ограничиваются (в отличие от первого). Следовательно, они могут быть равными нулю. Тогда под определение квадратного подходят уравнения вида
ax2 + bx = 0 (c = 0, ab 0),
ax2 + c = 0 (b = 0, ac 0),
ax2 = 0 (b = c = 0,a 0).
ax2 + c = 0 (b = 0, ac 0),
ax2 = 0 (b = c = 0,a 0).
Но в левых частях этих уравнениях не три слагаемых!
Тем не менее, это квадратные уравнения, потому что их можно записать так
ax2 + bx +0 = 0,
ax2 +0 · x + c = 0,
ax2 +0 · x +0 = 0.
Так как количество слагаемых левой части уравнений ax2 + bx = 0, ax2 + c = 0, ax2 = 0 визуально меньше, чем может быть, их называют неполными квадратными уравнениями. Тогда как квадратное уравнение ax2 + bx + c = 0, в котором все коэффициенты отличны от нуля, называют полным.
Таким образом, отсутствие в записи конкретного уравнения свободного члена или слагаемого с первой степенью неизвестного не даёт нам права сомневаться в том, что уравнение всё-таки квадратное. Однако и наличие их не является веской причиной отнести уравнение к квадратным. Об этом чуть ниже.
Следующим возникает вопрос, а почему, собственно a 0? (Конечно, искушённый читатель знает почему.) Можно ли, например, уравнение вида ax2 + (a 1)x + a = 0 (или в общем виде f (a) x2 + g (a) x + h (a) = 0) называть квадратным?
Давайте похулиганим и поставим в качестве первого коэффициента ноль. Тогда уравнение примет вид bx + c = 0.
Но это же линейное уравнение! Оно имеет свою теорию, свои изюминки.
Пусть будут «мухи отдельно, котлеты отдельно».
Теперь понятно, что требование a 0 необходимо для сохранения в квадратном уравнении второй степени квадрата неизвестного. Вот этот признак будет определяющим!
В дальнейшем, говоря о квадратном уравнении, мы будем помнить, что старший коэффициент не равен нулю, не оговаривая это каждый раз. Договорились?
Тогда уравнение f (a) x2 + g (a) x + h (a) = 0 правильно называть уравнением с параметром второй степени, которое при определённых условиях может быть квадратным, а может им и не быть (стать линейным).
Однако не будем торопиться. Наличие второй степени неизвестного необходимый, но не достаточный признак квадратного уравнения.
Рассмотрим следующие уравнения:
ax2 + by + c = 0 и ax2 + bx3 + c = 0.
Выполним сравнительный анализ этих уравнений с квадратным ax2 + bx + c = 0 по трём признакам:
наличие второй степени неизвестной,
наибольшая степень неизвестной,
количество неизвестных.
Зафиксируем для каждого уравнения эти параметры.
Результаты сравнительного анализа организуем в таблицу.
Итак, что мы имеем?
Наличие второй степени неизвестного является общим для всех трёх уравнений. Но по двум другим признакам сравнения, квадратное уравнение отличается: в квадратном уравнении вторая степень неизвестной является наибольшей и неизвестная только одна.
Именно это и важно!
Собственно говоря, квадратным является целое рациональное (или по-другому алгебраическое) уравнение второй степени с одним неизвестным2.
Процесс ограничения класса алгебраических уравнений можно представить в двух направлениях:
алгебраическое уравнение первой степени, второй степени и так далее;
алгебраическое уравнение с одной неизвестной, с двумя неизвестными и так далее.