Физика повседневности. От мыльных пузырей до квантовых технологий - Аттилио Ригамонти 3 стр.


Явление продольного изгиба

a. До тех пор, пока вертикальная сила F, прилагаемая к линейке, остается меньше предела F0, линейка не деформируется.

b. Как только F > F0, линейка начнет сгибаться (и даже может сломаться, если сила станет слишком большой).

c. Изменение угла Ѳ0, который образует вертикальная линейка в зависимости от величины силы F. Когда последняя достигает величины F0, линейка может изогнуться вправо (Ѳ0 > 90˚) или влево (Ѳ0 < 0): кривая изменения угла Ѳ0 имеет две ветви, которые создают бифуркацию

Озера и реки

В большое озеро обычно впадает много водных потоков. Например, в Женевское озеро втекает не только Рона, но и небольшие реки, такие как Дранс на юге и Вёвеж на севере. А вытекает из него одна Рона. И это общее утверждение: независимо от количества впадающих в озеро рек, из него никогда не вытекает более одной! Как это объяснить?

Причина заключается в том, что вода из озера вытекает по самому глубокому (низкому) руслу, которое она находит. Если не принимать во внимание исключительные случаи паводков, то обычно поверхность воды в озере находится на уровне самого низкого из возможных мест вытекания, поэтому из него выходит только один поток. Даже если из озера в данный момент вытекает несколько рек, такая ситуация будет нестабильной: ее можно наблюдать только на недавно сформировавшихся озерах. Действительно, самый глубокий поток с более быстрым течением вызовет и более сильную эрозию. В результате его пропускная способность будет увеличиваться, что приведет к снижению уровня озера. Поэтому другие русла будут постепенно мелеть и в конце концов заполнятся грязью. Таким образом, из всех вытекающих из одного озера рек «выживает» только самая глубокая.


9. Дельта Роны. Подходя к Средиземному морю, река разделяется на несколько рукавов


Аналогичными свойствами обладают и реки. Хорошо известно, что реки способны сливаться (когда одна впадает в другую), в то время как разветвляются они очень редко. Поток воды повсюду следует по пути с наибольшим уклоном, и маловероятно, что в каком-то месте этот путь раздвоится. Лишь одна специфическая область является исключением: это устье реки, то есть место ее впадения в море, водохранилище, озеро или другую реку. Здесь река иногда разделяется на несколько рукавов, образуя дельту (илл. 9). Дело в том, что вдали от моря поток выстраивает свой путь через складки местности, которые формировались долгие миллионы лет. В дельте же, напротив, река сама формирует свои берега, при этом вынося песок в море и перекрывая этими отложениями свой путь.

Итак, река добралась до моря, и эта глава подходит к концу! Мы еще вернемся на морской берег в главе 5, чтобы обсудить другое удивительное природное явление  прилив.

Глава 2

Искусственные и природные волноводы

Каким чудом звук, порожденный вблизи австралийского побережья, достигает Бермудских островов в десятках тысяч километров от него? Чтобы это понять, проведем параллель между распространением звука и света, для описания которого мы привыкли использовать понятие «луч». Затем мы погрузимся в океан в поисках таинственного волновода, который может передавать звук на огромные расстояния.

За последние 20 лет огромное, постоянно растущее количество данных перемещается с одного континента на другой благодаря оптоволоконным кабелям, пересекающим океаны (илл. 1). На илл. 2 показан путь сообщения, отправленного с вашего компьютера или телефона американскому или японскому коллеге. Конечно, эти световые волны слабеют во время пути, но затухание относительно невелико, а необходимое количество промежуточных станций удивительно мало.

Распространение звуковых волн

Оказывается, что океан способен выступать в качестве акустического волновода. Это удивительное явление обнаружили советские и американские ученые в 1940-х годах: звуковые волны, распространяющиеся в океане, иногда обнаруживаются в тысячах километров от их источника! В одном из самых впечатляющих экспериментов звук подводного взрыва у побережья Австралии обогнул половину земного шара и был зарегистрирован на уединенном архипелаге Атлантического океана  Бермудских островах. Звуковой сигнал прошел под водой более 19 600 км  абсолютный рекорд!

1. Пучок оптических волокон в защитной оболочке. Оптические волокна из стекла или пластика имеют в диаметре 125 мкм


2. Распространение светового луча в оптоволокне. Передаваемый луч много раз отражается от границы между сердцевиной и оболочкой и таким образом направляется по волокну. Данные кодируются изменением интенсивности света


Интенсивность звукового сигнала падает по мере удаления от источника. Действительно, излучаемая источником энергия распределяется равномерно во всех направлениях. При этом в отсутствие затухания общая энергия звуковой волны остается неизменной. На расстоянии R от источника эта энергия распределяется по площади сферы, пропорциональной R2. Таким образом, интенсивность звука при удалении от источника падает по закону 1/R2 (илл. 3). И это еще не учитывая рассеивающих явлений, поглощения и диффузии в среде, где распространяется звук!

Чтобы австралийский взрыв был услышан на Бермудских островах, интенсивность дошедшей туда волны должна оказаться достаточно заметной. А для этого необходимо, чтобы излучаемая источником волна была направлена на архипелаг и не рассеивалась в других направлениях. Чтобы волна распространялась соответствующим образом, нужно, чтобы у волновода были полностью отражающие стенки: непроницаемые и не поглощающие звук.

На каком же принципе основывается этот «акустический волновод» в океане? Можно предположить, что он аналогичен принципу оптических волноводов, который предполагает полное внутреннее отражение волн от стенок (см. главу 2, «Отражение и преломление световых волн»). Значит, происходит полное отражение акустических волн на границе между водой и воздухом? Нет! Скорость звука в воде намного выше, чем в воздухе (в холодном Гренландском море она составляет в среднем 1411 м/с, в теплом Средиземном море  1554 м/с, в то время как скорость звука в воздухе при нормальных условиях равна 335 м/с). Это означает, что вода для звука является средой гораздо менее «плотной», чем воздух,  ситуация, прямо противоположная случаю распространения света.


3. Интенсивность звука, издаваемого говорящим, уменьшается как 1/R2 по мере удаления от него, при отсутствии препятствий или фокусировки звука в одном направлении


Отсюда следует, что условия полного отражения для звуковой волны, распространяющейся из воды в воздух, не соблюдаются. Когда исходящая от дна моря звуковая волна доходит до поверхности, всегда возникают преломленная и отраженная волны. Еще одно следствие: в случае акустической волны преломленный луч не отклоняется от вертикали, а, наоборот, приближается к ней.

Значит, предположение, что поверхность океана может быть отражающей поверхностью, неверно? Не так быстро! Фактически доля энергии, которая преломляется на границе между водой и воздухом, во многом зависит от угла падения и соотношения скоростей между средами. В случае очень разных скоростей, как в нашей ситуации, интенсивность преломленной (вышедшей в воздух) волны невелика вне зависимости от угла падения. Таким образом, на поверхности океана отражение почти полное: доказано, что не более 1 % интенсивности падающей звуковой волны, распространяющейся почти горизонтально, проходит из воды в воздух. Следовательно, поверхность океана, похоже, способна хорошо отражать звук из глубин


4. Пример направленного распространения акустических волн в воздухе. Дети делятся секретом Держа руку у рта, девочка предотвращает распространение звукового сигнала во всех направлениях


Так что же, мы, наконец, нашли объяснение распространения звука на большие расстояния в океанах? Увы, нет  по двум причинам. Во-первых, часть энергии все равно теряется каждый раз, когда звуковой луч попадает на поверхность океана. Во-вторых, она почти всегда неровная, что препятствует отражению звуковой волны. В конечном счете поверхность океана, за исключением случаев штиля, не может сформировать верхнюю границу природного океанического волновода, который мы пытаемся разыскать. Что касается дна океана, то оно еще меньше подходит для образования такой границы. Донные отложения не отражают звук, а, наоборот, склонны поглощать его. Таким образом, стенки океанического проводника звука должны находиться где-то между дном и поверхностью именно здесь мы их и обнаружим! Чтобы продолжить наше расследование, давайте подробнее рассмотрим процесс распространения звука в океане.

Назад Дальше