!!! Какие ещё дети?
Ах да, мы чуть не забыли сказать, что книжка-то эта в основном детская. Большинство взрослых такой основательной науке уже не переучишь. Понятно, что им слышать такое очень обидно, но мы, конечно, об этом не будем трубить на весь мир и даже соблюдём приличия из всех задач фундаментальной науки, о которых мы расскажем, только самые лёгкие выделим специально для детей. Они-то этому будут ох как рады, ведь среди них будет и сама ВТФ!!! Да, именно в этой нашей книжке впервые за всю историю ВТФ эта проблема, и не просто проблема, а одна из фундаментальных основ науки (!!!), будет решена в развёрнутом виде, причём вместе с некоторыми другими имеющими отношение к ней проблемами. В этом смысле ВТФ станет для нас путеводной звездой, а её первооткрыватель Пьер Ферма нашим наставником, от которого мы напрямую (!) будем получать все необходимые нам сведения.
Однако ВТФ это только одна из целой сотни задач, которые также впервые (!!!) получат здесь решения. Вместе с решением проблемы ВТФ появится ещё целый ворох других очень впечатляющих задач, которые обрадуют многих детишек и заинтересуют их на долгое время. А мы будем очень сильно стараться привлечь их внимание, тогда глядишь они и взрослых втянут в эту игру. Если сравнивать значимость решаемых здесь задач, то неоспоримое лидерство останется за ВТФ, хотя по трудности её решения она совсем не сложная и с ней запросто справятся учащиеся средней школы Сомневаетесь? Так ведь это же задача из XVII века, а вот сегодняшние будут потруднее, но, чтобы их решать, нужно иметь надёжный фундамент знаний и ВТФ это один из его краеугольных камней.
О других задачах мы ещё расскажем в подробностях, и они тогда перестанут быть тайной за семью печатями, а вот те, которые мы только назовём, но не раскроем до конца будут очень даже любопытными. Взять хотя бы, к примеру, одну проблему астрономов, у которых накопились огромные коллекции записей космических сигналов электромагнитного излучения со всех областей звёздного неба. А что делать с ними, они до сих пор не знают. То ли это братья по разуму с нами общаются, то ли это просто естественное излучение. Денег потрачено немерено на гигантские радиотелескопы и кучу людей, на них работающих, а толку никакого. Вот бедолаги-то!
А мы знаем способ, как можно отличать разумные сигналы от естественных, но пока скромно об этом умолчим. Ведь знаем мы это только потому, что раскроем здесь одну из величайших тайн науки об определении сущности феномена информации. Сегодняшняя-то наука, понятное дело, в этом вопросе ни бум-бум. Но как только мы её, ну эту сущность информации, проясним, то кроме нас и другие смогут тогда догадаться, как можно анализировать электромагнитные сигналы на предмет их разумного происхождения.
Начнём же мы подбираться к решению этой задачи через проникновение в самую главную проблему всей науки это определение сущности феномена числа, в чём наука, к нашему большому сожалению, также ни бум-бум, впрочем, как и во многих других таких же «простых» вопросах. И вот теперь, когда речь заходит о самой главной сущности, способной отображать все другие сущности, (да, да, это о числе!), мы уже можем видеть, что дело принимает куда более серьёзный оборот, и подвижки нас ожидают такие, каких не было даже за всю обозримую историю нашей цивилизации!!!
Опять сомневаетесь? Но вот потому-то и ни за что не догадаетесь, что это за подвижки, а когда узнаете, то вряд ли поверите, что это возможно, но ведь тайны за семью печатями другими не бывают. Пока до них кто-то не доберётся и не начнёт их потихоньку раскрывать, все так и будут оставаться в неведении относительно того, как многое в этом мире устроено и почему об этом лучше знать, чем жить в неведении о существовании замечательного мира науки, где главенствуют совершенство и точность. Да и просто любопытно ведь узнать, как выглядят, например, доказательства теорем Ферма, оказавшиеся недоступными даже величайшим учёным. Теперь же есть книга, позволяющая всем желающим увидеть воочию все эти сокрытые и сокровенные тайны, неведомые сегодняшней науке, и получить тем самым уникальную возможность подняться на недосягаемую доселе высоту.
Достаточно увидеть в заглавии нашего труда имя Ферма, чтобы предположить в нём нечто великое. Ведь то был столь замечательный муж, что он не мог создать ничего мелкого, даже среднего: ум его сиял таким блеском, что не терпел ничего тёмного. Можно сказать, что он подобен солнцу, в миг разгоняющему сумрак и проливающему ослепительный свет своих ярких лучей даже в бездны. До сих пор все поражались Диофанту, и это вполне заслуженно; но, как бы велик он ни был, это пигмей в сравнении с таким гигантом, который проделал долгий путь по всему миру математики, исколесив невиданные дотоле земли. Виету восхваляли все те, кто в нашем веке посвятили себя изучению алгебраических операций, так что для прославления какого-нибудь учёного достаточно было сказать, что в труде по анализу он следовал мысли этого автора. Но и он не достиг вершин науки, что станет ясно из многих объясненных ниже примеров. Перед Клодом Гаспаром Баше я всегда преклонялся как перед человеком тончайшего ума; в добавок он был моим близким другом, а его изыскания о Диофанте прекрасно показывают, насколько проницателен он был в науке о числах. Но его взор слабее, если сравнить его с рысьими глазами нашего Ферма, проникавшими в самые сокровенные глубины.
Достаточно увидеть в заглавии нашего труда имя Ферма, чтобы предположить в нём нечто великое. Ведь то был столь замечательный муж, что он не мог создать ничего мелкого, даже среднего: ум его сиял таким блеском, что не терпел ничего тёмного. Можно сказать, что он подобен солнцу, в миг разгоняющему сумрак и проливающему ослепительный свет своих ярких лучей даже в бездны. До сих пор все поражались Диофанту, и это вполне заслуженно; но, как бы велик он ни был, это пигмей в сравнении с таким гигантом, который проделал долгий путь по всему миру математики, исколесив невиданные дотоле земли. Виету восхваляли все те, кто в нашем веке посвятили себя изучению алгебраических операций, так что для прославления какого-нибудь учёного достаточно было сказать, что в труде по анализу он следовал мысли этого автора. Но и он не достиг вершин науки, что станет ясно из многих объясненных ниже примеров. Перед Клодом Гаспаром Баше я всегда преклонялся как перед человеком тончайшего ума; в добавок он был моим близким другом, а его изыскания о Диофанте прекрасно показывают, насколько проницателен он был в науке о числах. Но его взор слабее, если сравнить его с рысьими глазами нашего Ферма, проникавшими в самые сокровенные глубины.
ЖакдеБильи(Jacques de Billy), 1670г.
Священник и профессор математики
Введение
В содержании книги основная тема представлена состоящей из трёх десятков пунктов. В этом не было бы ничего особенного, если бы все эти пункты не содержали самые настоящие и невероятно громкие сенсации! Но сказать об этой книжке только это, означало бы не сказать о ней ничего. Одна только иллюстрация восстановленного нами реального (!) текста на полях пропавшей книги, (см. рис. 5), может вызвать у знатоков основной темы настоящий шок! «Неужели это та самая книга с пометками Пьера Ферма на полях?», подумают они. Но нет, пока ещё эта книга недоступна. А поскольку нам всё же удалось узнать, чтó на самом деле было записано на её полях там, где должна располагаться Великая теорема Ферма, то мы изобразили эту запись всеми доступными нам средствами. Если же сравнить этот восстановленный текст с тем, который был опубликован ещё в 1670 году, (см. рис. 3), то станет очевидно, что это совершенно разные записи!
Впрочем, в наше время Интернет буквально заполонён истошно кричащими заголовками о неких сенсациях, которых на самом-то деле нет, а прибегают к ним только для поднятия статистики просмотров. Когда же речь идёт о науке, то если и есть действительно сенсации, то только в дозах не уловимых никакой статистикой. Проблема здесь в том, что оценки в заголовках дают сами же распространители информации, доверять которым явно не стоит. Что же касается содержания данной книги, то здесь ситуация принципиально иная, поскольку все данные здесь оценки и выводы может проверить самый что ни есть объективный и неподкупный судья, т.е. обычный калькулятор, и все желающие всегда могут к нему обратиться.
В частности, если возникнут подозрения в том, что восстановленная запись Ферма на полях это не более чем очередная фальшивка среди моря всяких других, то они окажутся не только неконструктивны, но и отвергающие саму возможность узнать настоящее решение знаменитой научной проблемы. Если же этот фактор не учитывать, то упорствующие в таких подозрениях рискуют оказаться в очень даже глупом положении, т.к. в этой самой восстановленной записи есть как раз то, о чём наука до сих пор не имела ни малейшего представления. Ведь для неё ВТФ всегда была всего лишь головоломкой, которую более трёх веков так и не смогли разгадать.
Такое пренебрежительное отнесение одной из фундаментальных научных проблем к сфере интеллектуальных развлечений привело к тому, что реальная наука стала уступать место идеям, не имеющим с ней ничего общего. В итоге получилось так, что все справочники и энциклопедии в унисон и безапелляционно сообщают нам, мол проблема ВТФ давно решена, а на самом деле наука и понятия не имеет о том, как реально обстоят дела в действительности. Если бы это и на самом деле было так, то последствия оказались бы настолько существенными, что радикально изменили бы состояние вообще всей науки в целом!!!
Не верите? Ну что ж, судите сами, вот лишь одно из таких последствий. Если ВТФ доказана, т.е. решение в целых числах уравнения Ферма an+bn=cn при n>2 невозможно, то это уравнение оказывается единственным (!!!) исключением из более общего случая Ax+By=Cz, в котором можно для любых (!!!) заданных натуральных x, y, z, кроме, естественно, x=y=z>2, вычислить сколько угодно (!!!) решений в целых числах! Ну и как? Разве наука знает, как решать это общее уравнение? Конечно, нет. А может быть она хоть что-нибудь знает о детских уравнениях Ферма с волшебными числами? Или о чудесной формуле «Бином Ферма»? Тоже нет. Впрочем, об этой формуле каким-то невероятным образом догадался советский писатель-фантаст Александр Казанцев, но математики не могли помочь её вывести, вот и пришлось ему вместо эффектного уравнения, (см. рис. 1), демонстрировать пустой муляж.