Чудеса арифметики от Пьера Симона де Ферма - Юрий Вениаминович Красков 4 стр.


Даже на далёких от науки людей этот очевидный факт может произвести просто шокирующее впечатление. Ведь тогда явно напрашивается вопрос: если наука не знает даже этого, то что же она тогда вообще может знать? В этой книге будет дано разъяснение в чём здесь трудность и предложено решение этой проблемы. Это сразу потянет за собой необходимость аксиом и базовых свойств чисел, о которых и раньше было известно, но совсем в ином понимании. После определения понятия числа и аксиоматики потребуется доказательство ОТА, т.к. иначе бóльшую часть всех других теорем будет просто невозможно доказать.

Как видно из этого примера, если даётся основополагающее определение понятия числа, то за этим сразу возникает необходимость построения начальной системы, определяющей границы знаний, в которых она может развиваться. Это как у музыкантов, если есть начальная мелодия, то из неё композитор может создать целостное произведение любых форм и типов, но если такой мелодии нет, то и вообще никакой музыки быть не может. В этом смысле наука представляет собой очень большое и сваленное в одну кучу множество разных мелодий, в которых она сама уже основательно запуталась и завязла.

Но если наука строится в рамках системы, заложенной в неё изначально, то для неё будет непозволительной роскошью ситуация, когда каждая отдельная задача будет решаться только одним найденным специально для неё способом. Такая же проблема имела место и во времена Ферма, но почему-то кроме него никто тогда ею себя не утруждал. Возможно поэтому и задачи, которые он предлагал, выглядели настолько трудными, что было не ясно не только как их решать, но и даже с какой стороны к ним подходить.

Взять хотя бы для примера только одну его задачу, при решении которой великий английский математик Джон Валлис сумел-таки вычислить требуемые числа и даже получить похвалу от самого Ферма, ни одной задачи которого тогда ещё никто не мог решить. Однако Валлис так и не смог доказать, что применённый им метод Евклида будет достаточен во всех случаях. Целое столетие спустя, этой проблемой занялся Леонард Эйлер, но и он тоже не сумел довести её до конца. И только очередной королевский математик Жозеф Лагранж получил наконец-то требуемое доказательство. Даже после всех этих титанических усилий великой королевской троицы почему-то так и осталось без внимания письмо Ферма, где он сообщал, что задача без проблем решается методом спуска, а вот как никто не знает до сих пор!

Для того чтобы показать, насколько эффективен может быть метод спуска, в данной книге, кроме доказательства ОТА, восстановлено также доказательство этим же методом ещё одной теоремы Ферма о единственном решении уравнения y3=x2+2 в целых числах, которую не могли доказать вплоть до конца XX века, пока Андрé Вейль не смог это сделать, но другим методом и опять того же Ферма. Если бы и задача, предложенная Валлису, была решена методом спуска, то трём величайшим математикам, приближённым к королевским дворам, не пришлось бы столько напрягаться. Однако и тот результат, который им удалось получить, может кануть в лету из-за чрезмерных трудностей его понимания, и тогда вся эта исполинская работа потихоньку минует учебники, как это уже случилось с доказательством Коши Золотой теоремы Ферма, о чём здесь тоже будет рассказано.

Также будет затронута тема, которую из-за кажущейся её чрезвычайной трудности просто как бы не замечали и обходили стороной. Эта тема об особой значимости арифметики для формирования абстрактного мышления, что очевидно имеет исключительное значение не только с точки зрения обучения в сфере образования, но и для понимания сущности такого понятия как разум. Не имея такого понимания, наука, также, как и в истории с мнимыми числами, обречена на множество неудач. В частности, будут тщетными все попытки создания «искусственного интеллекта» небиологического типа, т.к. это невозможно в принципе! В этой книге показано, как поистине гениальная догадка Готфрида Лейбница о том, что мышление есть неосознанный процесс вычислений, оказалась, хотя и верна, но только отчасти, поскольку разум не может существовать как некий отдельный объект или устройство, а есть феномен вселенского масштаба!!! Если мы теперь попробуем резюмировать всё то, что мы здесь упомянули относительно арифметики, то выяснится, что это не только наука наук, но и очень эффективный образец для подражания.

Конечно, в её сегодняшнем состоянии это было бы просто немыслимо, но с учётом того, что изложено в данной книге, такое подражание станет неизбежным и постепенно будет создан некий стандарт, по которому будут строиться вообще все без исключения науки. Совсем не трудно догадаться, что первым пунктом этого стандарта будет определение сущности данной конкретной науки. Ну и конечно все сразу подумают, что уж на такой-то вопрос легче лёгкого найти ответ, хотя бы заглянув в какие-нибудь справочники или энциклопедии.

Конечно, в её сегодняшнем состоянии это было бы просто немыслимо, но с учётом того, что изложено в данной книге, такое подражание станет неизбежным и постепенно будет создан некий стандарт, по которому будут строиться вообще все без исключения науки. Совсем не трудно догадаться, что первым пунктом этого стандарта будет определение сущности данной конкретной науки. Ну и конечно все сразу подумают, что уж на такой-то вопрос легче лёгкого найти ответ, хотя бы заглянув в какие-нибудь справочники или энциклопедии.

Ага, как бы не так! Не говоря уже о том, что ответы на этот простейший вопрос почему-то оказываются разные (?), а понять хотя бы что-то из всех них в совокупности вряд ли вообще возможно. Тогда выходит, что специализирующиеся на каких-то науках учёные просто не знают, что они делают? Да нет, конечно. Они также, как и их предшественники, используют терминологию, смысл которой почему-то никто не удосужился определить, и в результате вот такой игры без правил рано или поздно невесть откуда возникают призраки, создающие иллюзию фантастического прогресса.

Ну а как же насчёт образца для подражания? Учитывая то, что в этой книге есть даже не одно, а целых два определения сущности понятия числа, можно на этой основе сформулировать краткое определение сущности арифметики, скажем, так: арифметика это наука о происхождении чисел и способах вычислений. Тогда из понимания сущности чисел можно построить их аксиоматику и базовые свойства, которые, в свою очередь, выведут на ОТА и другие теоремы, вытекающие из потребностей в вычислениях. Аналогичным способом можно строить и другие знания, начиная с базовых понятий и сущности строящейся на них науки.

Пусть теперь, к примеру, нам нужно использовать арифметику как образец для подражания в целях построения, скажем, физики. Для этого возьмём в качестве основного одно из известных определений этой науки следующим образом: физика это наука о сущности, свойствах и взаимодействии материальных объектов. Ну вот Кажется мы наткнулись на непреодолимую стену, ведь определения понятия материи не существует. Вон философы-то сколько бумаги потратили, а толку никакого. Но, как гласит народная мудрость, нечего на других-то пенять, коль у самих рожа кривая. Физики и сами без особых трудностей могут эту проблему решить, ведь за них это всё равно никто другой не сделает.

Они просто примут в качестве аксиомы, что всё материальное обладает такими свойствами, как масса и энергия. Вот так просто вся проблема и решится. Ну а как насчёт определения сущности самих этих свойств? Так ведь это ещё сэр Исаак Ньютон очень хорошо потрудился, да ещё и использовал стиль изложения вместе с подходами аж от самого Евклида! А нам-то теперь, стоя на их плечах, совсем и не трудно будет раскрыть сущность этих понятий, особенно после того, как физики разобрались с единицами измерения. И действительно, в арифметике только подразумевается, что все вычисления должны вестись в соответствующих единицах измерения, а в других науках эти единицы должны быть всегда конкретные.

Например, в информатике используется единица измерения бит, однако и здесь учёные напортачили. Со времён Клода Шеннона считается, что битами измеряется количество информации, но учитывая, что понятие информации никак не определено, выходит, что измеряют неизвестно что. Но на самом-то деле всем это очень даже хорошо известно, что битами измеряют объём памяти носителя информации. А вот как измерять само количество информации это проблема, от решения которой во многом будет зависеть возможность реализации самого мощного технологического прорыва за всю историю нашей цивилизации!!!

Но ведь технологический прорыв это из области экономики, а вот как наука она пока является только призраком, хотя бы потому, что использует в качестве единиц измерения одни лишь бессмысленные названия. Экономические кризисы, в отличие от разрушительных бурь, ураганов и смерчей, не имеют никакого естественного происхождения, а являются последствиями деятельности людей, не понимающих того, что они творят, а потому и не способных их предотвращать. В этой книге будет предложен способ решения этих проблем с точки зрения возможностей построения не бутафорских, как сейчас, а настоящих информатики и экономики по образу и подобию арифметики.

Из того, что мы уже рассказали, многие наверняка подумают, что всё это выглядит как-то слишком фантастично, чтобы быть реальностью. Но также все думали и про Ферма. Когда он предлагал кому-то свою задачу, тот рассуждал просто: ну раз Ферма гасконец, значит шутник. В книге Саймона Сингха о ВТФ сообщается якобы Декарт назвал Ферма хвастуном, что и подтверждает это расхожее мнение, однако его точная фраза была: « в отличие от месье Ферма я не гасконец». Если это наше введение также вызовет недоверие или будет восприниматься как юмор, то это как раз то, что надо, т.к. соответствует духу нашего главного героя.

Назад Дальше