Да очень просто, он же юрист, а потому и делал всё исключительно и только легально, поэтому и все работы, в которых его оппоненты могли усмотреть письмена «еретического содержания», оставил при себе. К тому же, он был не только человек выдающегося ума с немалым жизненным опытом, но ещё и гасконец. А хорошо известно, что люди такого типа даже очень серьёзные дела могут оборачивать в этакую непритязательную и шутливую обёртку. Вот мол почитывал иногда на досуге «Арифметику» Диофанта и на её полях делал пометки с некоторыми идеями по примеру уважаемого и достопочтенного Клода Баше, который выполнил при подготовке в 1621 году издания этой книжки не только латинский перевод, но и добавил в неё свои собственные замечания.
Ферма поступил точно также, т.е. подготовил к изданию как бы не свои работы, а эту же «Арифметику» Диофанта, (см. рис. 96 в Приложении VI), с теми же самыми замечаниями Баше и всего лишь добавил к ним 48 своих замечаний. Всё было подготовлено так, что каких-либо претензий к этой его книге или к нему самому, достопочтенному сенатору Пьеру де Ферма, просто и быть не могло. Но когда книга вышла в свет, то, в отличие от её прежних изданий, она всколыхнула весь учёный мир! Те самые замечания, сделанные якобы мимоходом на полях книги Диофанта, оказались настолько ценными, что позволили учёным очень заметно развивать науку, используя новые идеи Ферма в течение сотен лет! И всё было бы просто превосходно, если бы не вот эта его последняя теорема, не поддающаяся в учёных кругах никакому уразумению.
Казалось бы, чего же тут может быть необычного, да таких нерешённых задач в науке хоть пруд пруди. Но в том-то всё и дело, что сам автор теоремы объявил об имеющемся у него «поистине удивительном доказательстве», а вот наука никак не может получить хоть какое-то в течение уже 350 лет!!! Ведь это только в массовом сознании автор теоремы настоящий триумфатор, а для науки это же как кость в горле. Здесь уже налицо явные признаки болезни. Что же это за наука, которая за сотни лет школьную задачку одолеть не может? Да ладно бы одну задачку, не может наука признать и тот очевидный факт, что у неё также нет и необходимых для этого базовых знаний, которые были открыты Ферма ещё в те далёкие времена.
Утратила она не только способности осмысливать, но и ориентироваться в происходящих вокруг неё событиях. Как это так, нет знаний, да их кругом хоть завались! Это уж точно, «знаний» накопилось так много, что понять и усвоить всё это богатство стало выше человеческих сил и возможностей. Но на самом-то деле всё обстоит как раз наоборот. Есть очень ощутимая нехватка настоящих знаний, а преобладающая часть из всего, что было накоплено это пустопорожнее перемалывание множества проблем, у которых либо вообще нет решений, либо и того хуже, когда в качестве исходных берутся сомнительные установки, на которых затем выстраивается умопомрачительные теории, порождающие, естественно, всякие парадоксы и противоречия. Тогда учёные всеми силами стремятся их преодолевать, но почему-то, если у них что-то и получается, то только с помощью ещё более умопомрачительных теорий.
Такой необычный характер наших представлений о науке может вызвать очень даже негативную реакцию. Но вот здесь-то мы можем признаться, что у нас были для этого очень веские основания, поскольку нам удалось заглянуть в те самые «еретические письмена» Ферма. Для пущей убедительности мы прямо здесь покажем один из примеров наших возможностей и точно воспроизведём реальный текст самой интригующей записи Великой теоремы Ферма на полях принадлежащего автору и неизвестно куда пропавшего экземпляра «Арифметики» Диофанта. Итак, на этом месте, (см. рис. 5), мы увидели несколько пометок к задаче под номером VIII, сделанных на латыни в разное время. В переводе они выглядят следующим образом:
1-я запись: Однако невозможно разложить С на два других С, или QQ на два других QQ. Оба доказательства методом спуска.
2-я запись: Второй случай невозможен, поскольку число 2aabb не квадрат.
3-я запись: Новое решение уравнения Пифагора AB=2Q.
4-я запись: Можно вычислить сколько угодно aa+bbcc=a+bc.
5-я запись: И вообще невозможно разложить любую степень, большую 2, на две степени с тем же показателем. Доказательство методом ключевой формулы.
6-я запись: Однако можно вычислить сколько угодно C+QQ=CQ .
2-я запись: Второй случай невозможен, поскольку число 2aabb не квадрат.
3-я запись: Новое решение уравнения Пифагора AB=2Q.
4-я запись: Можно вычислить сколько угодно aa+bbcc=a+bc.
5-я запись: И вообще невозможно разложить любую степень, большую 2, на две степени с тем же показателем. Доказательство методом ключевой формулы.
6-я запись: Однако можно вычислить сколько угодно C+QQ=CQ .
Теперь этот восстановленный текст записей на полях книги можно сравнить с текстом, опубликованном в издании «Арифметики» Диофанта с замечаниями Ферма в 1670 году, (см. рис. 3 и в конце п. 4.2):
Однако невозможно разложить куб на два куба, или квадрато-квадрат на два квадрато-квадрата, и вообще любую степень, бóльшую двух, на две степени с таким же показателем. Я открыл тому поистине удивительное доказательство, но эти поля слишком узки, чтобы вместить его здесь.
Но тогда выходит, что восстановленный текст совсем не тот, который был опубликован. Ну ещё бы, конечно же не тот! Ведь если публиковать реальный текст пометок, сделанных на полях книги, то никто ничего не поймёт, т.к. тот, кто их пишет, делает это не для кого-то, а только для себя. С другой стороны, очевидно, что содержание записей на полях таково, что они никак не могли быть сделаны по ходу чтения книги, а являются результатом очень объёмной и многолетней работы, которая была выполнена отдельно.
Очевидно, что дополнительно к этим коротким записям есть ещё целая куча бумаг в черновом и чистовом вариантах с краткими или подробными разъяснениями. Эти бумаги далеко не всегда подготовлены для печати и их ещё нужно доводить до требуемого состояния. Отсюда и понятно, почему для публикации в 1670 году текст был соответствующим образом отредактирован. Из реальных пометок было изъято всё, что раскрывает способ доказательства и последовательность решения отдельных задач, приведшая в итоге к открытию ВТФ.
Восстановленные пометки следуют в хронологическом порядке и могут расходиться во времени на годы. Записи на полях книги делались по мере их готовности, однако не предполагалось, что публиковаться они будут в таком же виде. Как раз наоборот, в итоговой формулировке ВТФ было полностью удалено всё то, что можно было утаить из истории и составных частей этого блестящего научного открытия. Остался лишь конечный результат, который оказался не по силам всей последующей науке вплоть до начала XXI столетия!
Появись эта реконструкция оригинала записи ВТФ на полях книги лет на 30 раньше, это вызвало бы в учёном мире настоящий переполох, т.к. шестая запись развивает (!!!) эту теорему до общего случая с разными показателями степеней! Однако переполох всё же состоялся 25 лет назад и вызвал его опять-таки не профессионал, а интересующийся ВТФ любитель со своей гипотезой, соответствующей восстановленной шестой записи. Конечно, поверить во всё это нелегко, но ведь и придумать такое тоже вряд ли возможно. Нам предстоит теперь более подробно разъяснить эти восстановленные записи на полях и это будет сделано в следующих разделах нашего исследования, а помогать в этом нам будет тот самый сенатор, который и затеял всю эту историю.
2. История заблуждений
Беспрецедентная череда неудач, крушений тайных надежд и поражений в затянувшемся на века штурме неприступной крепости, именуемой «Великая теорема Ферма», обернулись для науки таким кошмаром, который поставил под сомнение даже само её существование. Подобно свирепой эпидемии чумы ВТФ не только лишала рассудка многочисленных ферматистов-любителей, учёных и непризнанных гениев, но и очень даже поспособствовала тому, чтобы вся наука целиком оказалась ввергнутой в пучину неуправляемого хаоса.
Уже три с половиной столетия прошло после первой публикации ВТФ и 25 лет после того, как было объявлено, что в 1995 г. эту проблему якобы решил профессор Принстонского университета США Эндрю Вайлс (Andrew Wiles)6. Однако в очередной раз оказалось, что это «эпохальное» событие не имеет к ВТФ вообще никакого отношения!7 «Доказательство» Вайлса держится лишь на идее, которую предложил немецкий математик Герхард Фрай (Gerhard Frey). Её оценили как гениальную, но видимо только потому, что это была элементарная и даже очень распространённая ошибка!!! Вместо того, чтобы доказать невозможность уравнения Ферма an+bn=cn в целых числах при n>2, доказывается лишь его несовместимость в системе с уравнением y2=x(xan)(x+bn). Подобным способом можно доказывать вообще всё что угодно. Предъяви эту же работу кто-нибудь из студентов, любой из профессоров быстро вывел бы его на чистую воду, указав на очевидную подмену предмета доказательства.