Конструкции и монтаж фотоэлектрических модулей - Юрий Степанович Почанин 2 стр.


1.Фотосфера. Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700°С.

2.Хромосфера. Над фотосферой располагается хромосфера слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20000°С.

3.Корона. Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено. В короне можно наблюдать протуберанцы выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.

Солнце излучает огромное количество энергии. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем. Однако, только 47% всей энергии, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% на процесс образования фотосинтеза в природе.

Годовое поступление солнечной энергии, которую поглощает атмосфера, поверхность суши и океана (по состоянию на 2010 год) составляет примерно 3 850 000 экса джоулей (ЭДж). 1 ЭДж = 1018 Дж = 278 ТВт/ч. Мировое потребление энергии за 2010 год составило 539 ЭДж, в том числе электроэнергии 67 ЭДж.

Солнечная радиация это электромагнитное излучение, спектр которого состоит из: около 9% энергии приходится на ультрафиолетовое излучение с длинами волн от 100 до 400 нм, остальная энергия разделена приблизительно поровну между видимой (400760 нм) и инфракрасной (7605000 нм) областями спектра.

Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367Вт/м² (солнечная постоянная). Количество солнечной энергии, поступающей в течение дня, в значительной степени зависит от местных атмосферных явлений. В полдень при ясном небе суммарное солнечное излучение, попадающее на горизонтальную поверхность, может достигнуть (например, в Центральной Европе) значения в 1000 Вт/м² (при очень благоприятных погодных условиях этот показатель может быть выше), а при очень облачной погоде около 100 Вт/м² даже в полдень. Следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в три раза меньше (из-за смены дня и ночи, и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше. Солнечное излучение в атмосфере Земли делится на так называемое прямое излучение и на рассеянное на частицах воздуха, пыли, воды, и т.п., содержащихся в атмосфере и отраженного излучения. Их сумма образует суммарное солнечное излучение.

Солнечная энергетика направление нетрадиционной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Для оценки ресурса солнечной энергии, приходящей на единицу поверхности, применяются различные показатели. Обычно используется значение среднегодового, среднемесячного и суточное количество энергии, которое измеряется в кВтч/м². Также, часто используется так называемое "количество пиковых часов" солнечного сияния за период. Это приведенное значение получается делением прихода энергии за период на 1000 Вт/м². Этот параметр удобно использовать, так как обычно все параметры солнечных батарей и солнечных коллекторов указываются именно при этой пиковой освещенности. Поток солнечной энергии, падающий на установленный под оптимальным углом фотоэлемент, зависит от широты, сезона и климата и может различаться в два раза для заселённой части суши (до трёх с учётом пустыни Сахара). Атмосферные явления (облака, туман, пыль и др.) не только изменяют спектр и интенсивность падающего на поверхность Земли солнечного излучения, но и изменяют соотношение между прямым и рассеянным излучениями, что оказывает значительное влияние на некоторые типы солнечных электростанций, например, с концентраторами или на элементах широкого спектра преобразования.

Солнечная энергетика развивается по двум направлениям. По первому направлению (фотовольтаика) солнечная энергия преобразуется в электрическую с помощью фотоэлементов, второе направление (гелиотермальная энергетика) нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла. В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч солнца. Этот луч солнца используется как источник тепловой энергии для нагрева рабочей жидкости, которая расходуется для электрогенерации по аналогии с обычными ТЭЦ или накапливается для сохранения энергии. Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т. д. Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства, или для электродвигателя электрического транспорта. В Италии и Японии фотоэлектрические элементы устанавливают на крыши ж/д поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.

Фотоэлектрические системы хорошо зарекомендовали себя с самого начала промышленного применения фотоэлементов. К примеру, фотоэлементы служат основным источником питания для спутников на околоземной орбите с 1960-х годов. В отдаленных районах фотоэлементы обслуживают автономные энергоустановки с 1970-х. В 1980-х годах производители серийных потребительских товаров начали встраивать фотоэлементы во многие устройства: от часов и калькуляторов до музыкальной аппаратуры. В 1990-х предприятия энергоснабжения начали применять фотоэлементы для обеспечения мелких потребностей пользователей. Фотоэлектрические установки качают воду, обеспечивают ночное освещение, заряжают аккумуляторы, подают электричество в общую энергосистему и т. д. Они работают в любую погоду. При переменной облачности они достигают 80% своей потенциальной производительности; в туманную погоду около 50%, и даже при сплошной облачности они вырабатывают до 30% энергии.

Преимущества солнечной энергетики общедоступность и неисчерпаемость источника. Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки. Зависимость от погоды и времени суток. Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды.

Глава 2. Основные виды солнечных батарей

Фотовольтаикаметод выработки электрической энергии путем использования фоточувствительных элементов для преобразования солнечной энергии в электричество. В солнечной энергетике для получения электрической энергии широко применяют фотоэлектрические преобразователи (ФЭП). Несколько соединенных между собой преобразователей образуют солнечную батарею.

2.1. Принцип работы

фотоэлектрических преобразователей

В основе работы фотоэлектрического преобразователя лежит фотоэффектпреобразование энергии электромагнитного излучения в электрическую энергию. Сущность фотоэффекта состоит в том, что электроны, содержащиеся в каком-либо веществе (твердом, жидком или газообразном), под действием фотонов падающего излучения приобретают энергию, позволяющую им изменять свое энергетическое состояние. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи, поскольку это прямой, одноступенчатый переход энергии. К полупроводниковым относят материалы, у которых ширина запрещенной зоны (энергия, необходимая для перехода электрона из зоны валентности в зону проводимости) характеризуется значениями от 0 до 6 эВ. При создании гетероструктур может использоваться два, три и более полупроводника, которые компонуются определенным образом. По классификации полупроводниковых материалов иногда особо выделяют узкозонные полупроводники (ширина запрещенной зоны менее 0,3 эВ) и широкозонные полупроводники (ширина запрещенной зоны более 2 эВ.

Назад Дальше