Альтернативный волновой анализ - Валерий Васильевич Борискин 2 стр.


Общая методика проста: сравниваются две рядом стоящие волны, и та, которая имеет меньший размер, считается коррекционной волной, а та волна, которая имеет больший размер, относится к разряду импульсивных волн. Затем снова сравниваются две следующих волны и т. д.


Рисунок 1.2. Выделение импульсивных и коррекционных волн


Точно так же, если взять из ряда Фибоначчи два рядом стоящих числа, допустим, 3 и 5, то всегда можно безошибочно определить, которое из них большее, а которое меньшее. Это, в свою очередь, означает, что, имея под рукой конкретный ценовой график, мы можем с большой долей вероятности, определить, какая волна является импульсивной, а которая коррекционной.

Конечно, и у этого способа есть большое количество «минусов», потому что ни один способ не является универсальным по своей природе. Поэтому и приходится в конечном итоге пользоваться всем вместе, пытаясь при этом фильтровать один метод другим.

Итак, мы рассмотрели с вами некоторые базовые понятия и, на первый взгляд, кажется, что ничего сложного нет. Видим движение вверх,  обозначаем его бычьей волной, если ценовое движение, наоборот, направлено вниз,  обозначаем его медвежьей волной. Затем смотрим, куда направлен тренд, сравниваем размеры волн относительно друг друга и так определяем, какая из них является импульсивной волной, а какая коррекционной.

Но не все так просто, как может показаться. Дело в том что, несмотря на достаточно простое определение термина «волна», не всегда бывает достаточно просто однозначно определить точное начало и окончание волны. Подобная проблема возникает в связи с неоднозначным восприятием человеком некоторых участков ценового графика.

Часть II. Магия чисел Фибоначчи

По мере чтения лекций по техническому анализу мне очень часто приходится общаться с людьми различного уровня знаний и различной степени подготовки. Некоторые из них только что вступили на тернистый путь трейдера, поэтому, как правило, задают множество разнообразных вопросов в надежде услышать на них необходимые ответы, другие, наоборот, уже имеют солидный опыт за плечами, а значит, и сами готовы советовать и рекомендовать, как правильно использовать те или иные методы технического анализа. В этом плане мне хотелось бы сказать, что людей, занимающихся волновым анализом, очень много, все они могут быть разными, но объединяет их всех одно: интерес к волновому анализу. И уже только за это я их ценю и уважаю.

Вот примерно так однажды мне на электронный почтовый ящик и пришло интересное письмо, выдержку из которого я помещаю далее.

«Здравствуйте, Валерий. После прочтения Вашей книги, могу сказать одно,  я не согласен с рядом постулатов. Я полностью согласен с Вами, что чем больше промежуток времени взят, тем больше можно найти симметрии и той самой гармонии, скажем, как в снежинке. Но, вообще, хочется сказать, что гармонии в рынке как-то маловато»

Отвечая на этот вопрос, я вдруг понял, что необходимо более тщательно осветить тему чисел Фибоначчи, а значит, правила золотого сечения, сутью которых является рыночная симметрия. Более того, эта информация понадобится нам и в дальнейшем, чтобы прогнозировать длину и размер волновых паттернов. Поэтому, чтобы зря не терять драгоценное время, сразу переходим к изучению материала.

Ряд Фибоначчи

Согласно теории волнового анализа, абсолютно все финансовые рынки стремятся к точке равновесия, в которой проявляется совершенство пропорций ценовых волн. Все это объясняется достаточно простым законом, называемым «правило золотого сечения», и которое неотъемлемо связано с числами Фибоначчи, точно так же, как ценообразование неотрывно связано с такими понятиями, как спрос и предложение.

Думаю, многим трейдерам известно, что числа Фибоначчи используются в качестве математической базы теории волн Эллиотта. С помощью этого ряда определяется совокупное количество волн в структурах, а также прогнозируется конечная величина размера волны. В нашем случае альтернативный волновой анализ ничем не отличается от волновой теории Эллиотта, разве что является своеобразным ответвлением оного, хотя при этом оперирует с теми же самыми волнами, что и классическая теория. А это означает, что числа Фибоначчи нам точно так же понадобятся в дальнейшем. Однако прежде чем мы приступим к изучению вопросов, связанных с последовательностью Фибоначчи, необходимо добавить небольшое замечание: в торговой практике очень часто используют такие понятия, как «числа Фибоначчи» и «коэффициенты Фибоначчи». Как вы понимаете, это несколько разные вещи, а значит, необходимо конкретизировать каждое из них, рассмотрев их по отдельности.

Начнем, пожалуй, с самого простого, с ряда чисел Фибоначчи, тем более что коэффициенты Фибоначчи непосредственно вытекают из данного ряда. Многие знают, что правило, по которому образуются числа Фибоначчи, очень простое: первые два члена единицы, а затем, каждый последующий член ряда получается путем сложения двух предшествующих значений.

Например, 3 + 5 = 8, 5 + 8 = 13 и т. д.




Чем же так интересен ряд чисел Фибоначчи, кроме того, что его значения очень часто используются для записи периодов различных индикаторов? Последовательность Фибоначчи имеет несколько весьма показательных закономерностей, которые, кстати, и определяют коэффициенты Фибоначчи.


Рисунок 2.1. Числа Фибоначчи и спираль Фибоначчи


1. Сумма двух предыдущих чисел ряда соответствует последующему числу в последовательности. Например: 3 + 5 = 8; 5 + 8 = 13 и т. д. (рис. 2.1).

2. Каждое третье число ряда четное, то есть кратно двум. Например: 2: 2 = 1, 8: 2 = 4, 34: 2 = 17, 144: 2 = 72.

3. Отношение текущего числа ряда к последующему числу (Fn/Fn+1) стремится к значению 0,618, за исключением первых четырех чисел ряда. При этом значения соотношений колеблются вокруг величины 0,618 то в большую, то в меньшую сторону, и размах колебаний постепенно уменьшается.

4. Отношение текущего числа ряда к предыдущему числу (Fn/Fn-1) стремится к значению 1,618 (величина, обратная 0,618), за исключением первых четырех чисел ряда. При этом соотношения колеблются вокруг величины 1,618 то в большую, то в меньшую сторону, и размах колебаний постепенно уменьшается и уже после второго значения начинает соответствовать величинам отклонения для 0,618.

5. Отношение текущего числа ряда к последующему числу через одно (Fn/Fn+2) стремится к значению 0,382(в сумме с 0,618 дает 1), за исключением первых четырех чисел ряда. При этом значения соотношений колеблются вокруг величины 0,382 то в большую, то в меньшую сторону, и размах колебаний постепенно уменьшается и уже после второго значения начинает соответствовать величинам отклонения для 0,618 и 1,618.

6. Отношение текущего числа ряда к предыдущему числу через одно (Fn/Fn) -2стремится к значению 2,618 (величина, обратная 0,382), за исключением первых четырех чисел ряда. При этом значения соотношений колеблются вокруг величины 2,618 то в большую, то в меньшую сторону, и размах колебаний постепенно уменьшается и уже после второго значения начинает соответствовать величинам отклонения для 0,618, 1,618 и 0,382.

Полученные нами значения называются коэффициентами Фибоначчи и активно используются большинством трейдеров в биржевой торговле с целью определения соотношений длин волн друг относительно друга.

Правило «золотого сечения»

Ранее я уже указывал на тот факт, что согласно волновому анализу, все финансовые рынки стремятся к равновесию, которое объясняется тем, что предложение стремится удовлетворить спрос, и наоборот. В результате это приводит к тому, что цена начинает формировать волны, размеры которых соответствуют пропорциям «золотого сечения». Попробуем разобраться в том, что это такое и каким образом данное правило связано с рассматриваемым нами рядом чисел Фибоначчи.

По одной из легенд считается, что математик Фибоначчи вывел свой ряд, наблюдая за совершенством пропорций великой пирамиды в Гизе. Сегодня известно, что эти пирамиды построены по правилу «золотого сечения», для объяснения которого можно использовать простую формулировку: золотое сечение представляет собой деление непрерывной величины на части в таком соотношении, при котором большая часть относится к меньшей части, точно так же, как вся величина относится к большей части».

Вообще, «золотое сечение» рассматривается как аналог идеальной пропорции, истинной мерой соотношения частей между собой. Если разделить отрезок на две неравные части, то только в случае «золотого сечения» полученные части будут гармонично соотноситься как друг с другом, так и с целым отрезком в общем.


Рисунок 2.2. Золотое сечение отрезков в спирали Фибоначчи


Таким образом, золотое сечение отрезка возможно только тогда, когда части составляют значения0,382 и 0,618. В таком случае деление отрезка единичной длины на две неравных части будет соответствовать правилу «золотого сечения», так как при этом большая часть отрезка будет относиться к меньшей части точно так же, как и весь отрезок будет относиться к части, и наоборот (рис. 2.2). Если все сказанное выше записать в формульном виде, тогда можно получить достаточно простое соотношение, отражающее условия «золотого сечения», где М означает меньшую часть отрезка, Б большую часть, а М + Б целый отрезок.

Назад Дальше