Воздействие на геосферы Земли причина изменения климата - Михаил Стефанович Галисламов 9 стр.


Электрический заряд, движущийся в атмосфере, образует вокруг себя магнитное поле. Масштабные плазменные структуры достигают в длину нескольких сотен километров. В объемном плазменном образовании (плазмоиде) сосредоточен мощный энергетический потенциал. Его заряд вносит сильное возмущение и изменяет первоначальную конфигурацию электрического и магнитного поля Земли в локальной области пространства. Стрелка компаса отклоняется от своего естественного географического направления.

Когда напряженность электрического поля между положительно заряженной стороной плазмоида и поверхностью земли достигнет критической величины, происходит электрический пробой. Энергия зарядов, накопленной в этой части плазменной структуры, преобразуется в тепловую, звуковую, ударную волну и световое излучение (молнию). Длина наземных молний может быть от 1 до 10 км, длина молний между облаками от 1 до 150 км [36]. Температура в канале разряда может колебаться от 5000 °C до 20000 °C.

10. Искусственно ионизованные области (ИИО)

Основы теории физики плазмы были заложены в начале XX века. В конце 40-х годов прошлого века Раземан и Ланг измеряли энергетическое распределение выходивших электронов. Пропуская моноэнергетический пучок электронов с энергией порядка нескольких кэВ через тонкую алюминиевую фольгу [G. Ruthemann, Ann. Phys. 2, 113 (1948); W. Lang, Optik 3, 233 (1948)], ученый заметил, что большая часть пучка проходила через фольгу без заметных потерь энергии. Но имелась группа электронов, терявших энергию приблизительно 15 эВ [37]. Если алюминий заменялся на другой металл, то наблюдалось то же самое явление, однако характеристические потери энергии менялись от металла к металлу. Оказалось, что часть электронов теряла определенное количество энергии на возбуждение продольных плазменных колебаний внутри металла на частоту ωр характеристической для каждого данного металла. Величина теряемой энергии равна электронному «кванту» энергии ћωр, где ћ постоянная Планка. Этот квант назвали плазмоном. Теоретическая интерпретация эксперимента, данная Бомом и Пайнсом [D. Ρiηes and D. Воhm, Phys. Rev. 83, 221 (1951); 85, 338 (1952); D. Pines, Revs Mod. Phys. 28, 184 (1956)], положило начало исследованиям плазмы твердого тела. При определенных условиях внутри твердого тела возможно распространение медленных электромагнитных волн, начиная от звуковых, до частот радио и микроволнового диапазона. Природа обеспечила твердые тела (металлы, полуметаллы, полупроводники) почти свободными заряженными частицами.

Плазма непрозрачна для электромагнитных волн, частоты которых меньше плазменной. Проблема распространения волн проявляется и в физике твердого тела. В присутствии статического магнитного поля распространение поперечных электромагнитных волн через плазму твердого тела возникает много новых частот. Появляется такой параметр как угол между направлением распространения волны и магнитным полем. Для описания низкочастотных волн в плазме подходит модель возбуждения волн в заряженной струне, параллельно магнитному полю. Если силовая линия смещается поперек поля, то заряженные частицы вынуждены двигаться в нем подобно бусинкам, насаженным на тонкую струну [38].

В США, Англии и Советском Союзе в период с 1948 по 1958 г. широко проводились исследования плазмы. Особенностью поведения плазмы твердого тела является зависимость массы носителей от ориентации кристаллографических осей. Предполагаются различия между величинами масс подвижных носителей в газоразрядной и твердотельной плазме. В твердом теле электрон имеет эффективную массу m, определяемую периодическим потенциалом решетки. Она изменяется от материала к материалу, составляя от нескольких масс свободного электрона me до сотых долей me. Разнообразие твердых материалов позволяет иметь плазму с такими параметрами, которые невозможны в газе.

Михаил Галисламов

Воздействие на геосферы Земли причина изменения климата

1. Потепление климата на планете

Аномальные изменение температуры и природные катаклизмы являются одними из обсуждаемых международных тем XXI века. Высокая скорость потепления климата, наблюдаемая в течение последних десятилетий, вызывает беспокойство. Наука предоставляет в исследованиях аргументы, подтверждающие связь хозяйственной деятельности человека с выбросами парниковых газов (ПГ), которые в конечном итоге оказывают влияние на климат. Начиная с 1860 г. к ПГ стали относить диоксид углерода (СО2), который сильно экранирует инфракрасное излучение Земли. Крупнейшими мировыми проблемами последних десятилетий стало глобальное потепление и появление озоновых дыр. Из парниковых газов наибольшее воздействие на глобальное потепление оказывает водяной пар (около 60 %), затем углекислый газ (20 %), метан (1518 %), хлорфторуглероды (фреоны), окислы азота (25 %) [1]. Суммарное количество ежегодных выбросов метана природного происхождения составляет ~ 6,71014 г, а суммарные выбросы метана из антропогенных источников равны ~ 4,81014 г. [1]. Предполагают, что природные выбросы метана в атмосферу составляют по своему объему около 60 %, а антропогенные 40 %. Несмотря на сформированное общественное мнение, причины потепления климата окончательно не установлены.

Если углекислый газ признать причиной глобального потепления, то после 1940 г. выбросы росли, следовательно, десятки лет не должна была понижаться температура. С 1970 г. и по настоящее время снова теплеет. Существует мнение, что глобальные изменения климата связаны в основном с усилением глубинной дегазации Земли. Заявление о высоких объемах антропогенной углекислоты, поступающей в атмосферу, не доказывает его роли. Углекислый газ, выработанный при антропогенной деятельности, или поступающий из недр во время вулканических извержений, либо образующийся при разложении органического вещества, не может подниматься от земли выше первых метров. Его плотность (1,9768 г/л) [2] существенно больше плотности воздуха. Роль антропогенного фактора здесь является подчиненной.

Является ли наблюдаемое изменение климата результатом очередного потепления Земли, или результатом деятельности человека? Конечно, антропогенные выбросы вредят экологической обстановке на планете. При подвижках земной коры неоднократно отмечали природные процессы, которые сопровождались масштабными выбросами в атмосферу и восходящих потоков разлагающегося газа метана [3]. Изменение климата беспокоит общество. Основные дискуссии по изменению климата касаются вопроса соотношения между естественными и антропогенными факторами, определяющими динамику температуры планеты. Концепция антропогенного происхождения глобального потепления, стала действенным инструментом геополитики.

Под воздействием выбросов в атмосферу температура на Земле неуклонно идет вверх. Особенно быстро этот процесс происходит в последние пятьдесят лет. Какова доля антропогенного фактора в потеплении? Одной из причин повышения температуры на Земле большинство климатологов считают парниковый эффект. Многие российские исследователи придерживаются мнения, что причины носят естественный характер. Современная наука предоставляет аргументы, подтверждающие связь хозяйственной деятельности человека с выбросами ПГ, которые, якобы, в конечном итоге и оказывают влияние на климат.

Содержание диоксида углерода (СО2) и метана (СН4) в атмосфере начало быстро увеличиваться с конца XVIII века. Начиная с 1860 г. к ПГ стали относить углекислый газ, который поглощает инфракрасное (ИК) излучение Земли. Газы атмосферы, облака и аэрозоли экранируют ИКизлучение земной поверхности, создают парниковый эффект в системе Земля атмосфера. Шведский ученый, С. Аррениус, в 1896 году рассчитал коэффициенты поглощения инфракрасного излучения водяным паром и углекислым газом в атмосфере, а также изменения температуры Земли при вариациях концентрации углекислого газа. Он выдвинул гипотезу, что снижение концентрации в атмосфере углекислого газа может являться одной из причин возникновения ледниковых периодов.

Согласно данным Организации объединенных наций, гидрофторуглероды (ГФУ), пришедшие на смену хлорфторуглеродам (ХФУ), не оказывают разрушающего влияния на озоновый слой, являясь мощными парниковыми газами. Объем их выбросов в атмосферу в 2010 х годах составлял порядка 0,5 гигатонн эквивалента углекислого газа в год, ежегодно увеличиваясь на 7 % [4]. Добавочное поступление СО2 связывают в основном со сжиганием топлива, уничтожением лесов и минерализацией пахотных почв. Концентрация СН4 в атмосфере с начала XIX века почти удвоилась [5]. Возрастание концентрации метана в атмосфере объясняют увеличением поголовья скота (СН4 один из продуктов метаболизма жвачных животных), переувлажнением земель при культивации риса и возрастанием добычи угля, в залежах которого этот газ накапливается.

Назад