Нейротон. Занимательные истории о нервном импульсе - Александр Иванович Волошин 14 стр.


Следующей ночью он проснулся в 3 часа после того, как снова представил эксперимент. На этот раз он не стал полагаться на свой почерк, поэтому бросился в лабораторию, чтобы попробовать эксперимент. Лёви извлёк два бьющихся сердца лягушек и опустил их в их в две мензурки с физиологическим раствором, где они продолжали биться. Затем он стимулировал блуждающий нерв в одном из сердец  процедура, которая замедляет частоту сердечных сокращений. Он извлёк солевой раствор из сосуда с сердцем, чей блуждающий нерв он стимулировал, и перелил его ко второму сердцу. Это вызвало замедление его сокращений. Тогда он воздействовал электричеством на другие нервные волокна в первом сердце ускорив его биение. Перенос солевого раствора заставил второе сердце ускориться, как он и увидел во сне.

Лёви интерпретировал эти результаты так, что блуждающий нерв выделил какое-то вещество, которое вызвало изменение частоты сердечных сокращений. Тот факт, что вещество могло затем быть перенесено ко второму сердцу с помощью солевого раствора, укрепило его уверенность, что воздействие было химическим. Лёви назвал предполагаемое химическое вещество «vagusstoff» (в переводе с немецкого означает «вещество вагуса»).

Прошло ещё несколько лет, прежде чем сэр Генри Дейл (Henry Hallett Dale, 1875  1968) выделил это вещество и назвал его ацетилхолином.

Лёви и Дейл разделили Нобелевскую премию в 1936 году за то, что продемонстрировали важность химической передачи в нервной системе, а история Лёви об эксперименте, который ему привиделся во сне, будет впоследствии почитаться в истории нейробиологии. По правде говоря, Лёви, вероятно, не проводил эксперимент в ранние утренние часы, как он утверждал. Он был известен как рассказчик склонный к сенсациям. По словам Дейла, Лёви сказал ему, что он проснулся второй ночью и просто постарался сделать записи аккуратно, чтобы спокойно провести эксперимент на следующий день. Тем не менее, популярная версия этой истории немного более запоминающаяся, и любому, кто занимается ежедневной скукой лабораторных исследований, будет непросто обвинить Лёви в том, что он хотел сделать своё открытие чуть более драматичным.

Эксперимент Лёви оказал бесценную поддержку «поварам» и послужил доказательством, что нервная система, по крайней мере у некоторых животных, использует химические вещества для передачи сообщений.

Победа «поваров»

Тем временем, для Лёви и его сторонников сражение на поприще науки было выиграно лишь наполовину. «Радисты» признавали, что организм может пользоваться химическими сигналами на периферии нервной системы, контролирующей конечности и внутренние органы. Но в головном и спинном мозге  священном центре нервной системы  могли существовать лишь электрические импульсы. Опять-таки имелись веские основания для такого мнения, поскольку нейроны вырабатывали электричество при любой активности.

«Радисты» также утверждали, что химические вещества  «материал для слюны, соплей, мочи и пота»  действуют слишком медленно для процессов, происходящих в мозге. Только электричество, которое распространялось мгновенно, могло стоять за мышлением. Как и сторонники ретикулярной теории Гольджи, «радисты» полагали, что работа клеток мозга отличается от деятельности клеток остального тела.

Не все физиологи были готовы включить эти данные в свою картину мира. А. А. Ухтомский в 1935 году считал, что нейротрансмиттеры максимум готовят клетку к восприятию электрического сигнала, а И. П. Павлов предпочитал и вовсе не вникать в клеточные механизмы нервной деятельности.

Но тем, кто считал мозг чем-то особенным с биологической точки зрения, пришлось постепенно сдавать свои позиции. На роль посредников «между электричеством и электричеством» нейротрансмиттеры всё-таки приняли. За следующие несколько десятилетий «повара» открыли множество химических соединений, передававших сигналы только в мозге, так называемых нейротрансмиттеров. Эти открытия подорвали гегемонию «радистов», и в 1960-е годы большинство учёных включали нейротрансмиттеры в своё понимание работы нейронов. [5]

Учёные сошлись на том, что когда нейрон «срабатывает», то по его аксону от основания до оконечности распространяется электрический импульс  то самое электричество, которое «радисты» определили много лет назад. Но электричество не может прыгать между клетками и даже преодолеть синаптическую щель шириной 0,00002 миллиметра, отделяющую один нейрон от другого. Поэтому аксон должен переводить электрические сигналы на язык химических соединений, которые могут преодолеть этот промежуток.

А самые упорные «повара» даже стали настаивать, что во время работы нервов, или при прохождении нервного импульса, в них происходит «химические процессы распада и восстановления нервного вещества».

Ныне считается, что большинство синапсов, в том числе те, что исследовались во времена этого спора, имеют химическую природу. Но некоторые нейроны образуют с другими электрические синапсы. В таких синапсах между двумя клетками появляются небольшие мостики, позволяющие электрическому току проходить из одной клетки в другую  примерно так, как некогда предсказывал Гольджи [7].

В целом вы можете думать о мозге как в терминах «поваров», так и в терминах «радистов», в зависимости от того, что и где вы измеряете,  подобно тому, как фотоны одновременно являются и волнами, и частицами.

Таким образом, как это иногда и бывает с научными спорами, обе стороны оказались в чём-то правы.

Так или иначе, химический аспект оказался гораздо более сложным. Мозг содержит сотни видов нейронов, где электрические импульсы передаются практически одинаково. Но нейроны используют сотни разных нейротрансмиттеров, передающих различные нюансы.

Определённые нейротрансмиттеры (например, глутамат) возбуждают нейроны, а другие (например, гаммааминомасляная кислота  ГАМК) действуют как ингибиторы и анестетики. Некоторые процессы в головном мозге приводят к одновременному выбросу возбуждающих и тормозящих веществ. (Например, когда ствол мозга индуцирует сонное состояние, он порождает сны, возбуждая определённые нейроны, но парализует наши мышцы, ингибируя другие нейроны.) Таким образом, нейрон на приёмной стороне сигнала должен аккуратно распробовать «суп» из нейротрансмиттеров на ближайшем синапсе и оценить каждый ингредиент  перед тем как решить, нужно ли сработать или нет.

В утверждении принципа химической передачи в синапсах, большую роль сыграли работы наших российских учёных  А.Ф.Самойлова, А.В.Кибякова, А.Г.Гинецинского.

Исследуя температурную зависимость процесса перехода возбуждения с нерва на мышцу, Самойлов нашёл, что она имеет высокий температурный коэффициент, что в большей степени подчёркивает химическую, а не физическую природу процесса распространения возбуждения.

А.В.Кибяков (1933) предположил, что передача возбуждения с помощью химических веществ осуществляется не только в нервно-мышечных соединениях, но и в соединениях между нервными клетками. Разработав методику перфузии шейных ганглиев кошки, он показал, что, если раздражать нервные волокна, подходящие к верхнему шейному ганглию, в последнем образуются химические вещества, способные вызвать возбуждения других ганглиев.

Работами Гинецинского (1935) показано, что химические вещества в нервно-мышечных синапсах, взаимодействуя с эффекторными клетками, вызывают на небольшом участке мембран изменение мембранного потенциала, получившего название потенциала концевой пластинки.

Можно было говорить о решительной победе химической тории передачи информации в синапсах.

Электрический синапс

Но вот в 1957 году был открыт синапс, в котором сигнал передавался практически без задержки, передача слабо зависела от температуры и не блокировалась магнием. Был открыт первый чисто электрический синапс.

Спор между «радистами» и «поварами» возобновился с новой силой. В 1959 году Дэвид Поттер и Эдвин Фершпан обнаружили эффективную электрическую связь между гигантским аксоном и аксоном моторного нейрона в брюшной цепочке рака. Было установлено, что возбуждение в виде электрического потенциала беспрепятственно и мгновенно передаётся в месте контакта от одного аксона к другому без всяких нейромедиаторов.

В нервной системе млекопитающих электрические синапсы тоже обнаружены, чаще всего они образуются между дендритами однотипных, близко расположенных нейронов, тогда как химические и смешанные  между аксонами и дендритами последовательно соединённых нейронов. Однако, в ЦНС млекопитающих и человека имеется всего около 1% электрических синапсов, они более характерны и преобладают в нервных системах низкоорганизованных животных. Это объясняется бо́льшей эффективностью и пластичностью химического типа передачи возбуждения с помощью медиаторов.

Появился новый термин  электрические синапсы  это места высокоспециализированных контактов между нейронами, где происходит прямая передача электрических потенциалов от одной клетки к другой. Электрические контакты могут связывать между собой не только нейроны, но и большинство других типов клеток, возбудимых или невозбудимых. Такими синапсами связаны рецепторные клетки, кардиомиоциты, гладкомышечные клетки, клетки печени, глиальные, эпителиальные и др.

Назад Дальше