Восхождение к вершине гиперкуба. Великая теорема Ферма для миллиардов обычных людей - Марат Авдыев 3 стр.


Рациональное числа представляются в виде дроби p/q. Можно сократить числитель и знаменатель до взаимно простых чисел, разделив их на НОД  наибольший общий делитель. Например, вместо 4/6 писать 2/3. Целую часть можно записать рядом с дробной как-то: 3/2 =1 ½.

Если читать умеет делить числа в столбик, то сможет дробное представление числа привести к десятичному виду, как например 2/3 = 0,6666666666, рано или поздно в этом ряду появится повторение одной или последовательности цифр или одной и той же цифры. Это происходит потому, что остаток от деления чисел всегда делится на одно и то же делимое. Рано или поздно варианты разных остатков будут исчерпаны и начнётся циклическое повторением (математики вводят понятие сравнение чисел по модулю, принцип Дирихле, а можно просто поэкспериментировать самостоятельно и убедиться!)


Рис. 1.2. Числа.


Вместе с тем, наряду с рациональными существуют иррациональные числа, они не могут быть представлены в виде десятичной дроби с повторяющейся последовательностью чисел, как например, 2= 1.41. является иррациональным числом. Допустим обратное, которое представимо в виде дроби, состоящей из не имеющих общих делителей числителя и знаменателя p и q. Рассмотрим внимательнее уравнение 2q2 = p2 Его левая часть делится на два, значит правая часть делится уже на четыре, поскольку p можно разложить на простые числа, как то: 2,3,5,7,11,13,17 . делящиеся только на себя и на единицу. Набор сомножителей в правой части будет повторяться дважды для p2, отсюда свойство делимости на четыре. Но тогда в этом уравнении и q будет делиться на два. Смело сократив левую часть на общий делитель два в итоге получим что числа p и q, вопреки сделанному допущению, имеют в качестве общего делителя двойку и её степени. А это означает, что исходное предложение относительно числителя и знаменателя оказалось ошибочным: оба они четные, делятся на два, но мы исходно предполагали, что p, q не имеют общих делителей, которые заранее сократили. Значит 2 не представляется в виде дроби, аналогичные рассуждения применимы для корня из двух степени n.

Трансцендентное число не может быть корнем алгебраического выражения, например число π = 3.14158 или число Эйлера е = 2.718. Вместе с тем трансцендентные числа играют важную роль не только в геометрии, но при описании динамических процессов в физике, экономике, социологии.

Целые, рациональные, иррациональные и трансцендентные числа образуют вместе множество действительных чисел R можно сопоставить каждому числу точку на оси абсцисс Х и радиус вектор из начала координат до этой точки, при этом длина этого вектора будет равна модулю числа |х|. Для случая плоскости R2, мы будем иметь дело с парами чисел: (x, y) и радиус вектором из начала координат до точки на плоскости. Для трехмерного пространства R3 понадобится задавать координаты его точек уже тройками чисел (x, y, z) а для многомерного пространства Rn координаты любой точки по осям описываются радиус-вектором (x1, x2,xn).

Интересно заметить, что целые числа можно сосчитать, а именно: сопоставить каждому целому числу натуральное число  его модуль. Отрицательные числа можно считать парами вместе с положительными (это напоминает работу проводника на два вагона). Такое множество, хотя и бесконечно, является счётным. Несложные рассуждения позволяют сделать вывод, что является счётным множество рациональных числе p/q. Представим себе огромный (бесконечный) кинозал, где номер ряда  это числитель, а номер места  знаменатель. Так например в первом ряду расположены слева направо (или с Запада на Восток) зрительские места с дробями 1/1, 1/2, 1/3, 1/4 и т. д. Во втором  2/1, 2/2, 2/3, 2/4 и т. д. Предположим, что все места размещены в зале с соблюдением социальной дистанции, так что контролёр может свободно перемещаться как по рядам, так насквозь любого ряда.

Если безбилетник сидит на месте p в ряду q, то проводник  робот, следующий из вершины 1/1 всё равно его обнаружит, если будет придерживаться несложного алгоритма. Итак, контролёр входит в зрительский зал с Северо-Запада, как раз в месте размещения 1/1.

Контролёр делает один шаг на Восток к месту 1/2;

далее шагает в Юго-Западном направлении к месту 2/1;

после этого делает ещё один шаг на Юг к месту 3/1;

затем совершает два шага в Северо-Восточном направлении к местам 2/2 и 1/3;

Если безбилетник сидит на месте p в ряду q, то проводник  робот, следующий из вершины 1/1 всё равно его обнаружит, если будет придерживаться несложного алгоритма. Итак, контролёр входит в зрительский зал с Северо-Запада, как раз в месте размещения 1/1.

Контролёр делает один шаг на Восток к месту 1/2;

далее шагает в Юго-Западном направлении к месту 2/1;

после этого делает ещё один шаг на Юг к месту 3/1;

затем совершает два шага в Северо-Восточном направлении к местам 2/2 и 1/3;

после чего совершает один шаг на Восток к 1/4;

потом три шага в Юго-Западном направлении, проверяя места 2/3, 3/2, 4/1

И таким образом контролёр последовательно исследует зрительский зал, дрейфуя как челнок, то в Юго-Западном, то в Северно-Восточном направлениях, охватывая контролируемую территорию всё расширяющимся на один шаг с каждым обходом треугольником, вершина которого размещается в Северо-Западной части зала.


Рис. 1.3. Рациональные числа можно «сосчитать». Если робот  контролёр двигается по маршруту как указано на рисунке, то он найдёт безбилетника в ряде q на месте p, что соответствует дроби p/q.


Вместе с тем, действительные числа сосчитать невозможно это множество образует континуум. Между двумя близкими рациональными числами всегда найдётся сколько угодно много других иррациональных чисел. Например, в треугольнике средняя линяя равномощна основанию. Это следует понимать так, что каждой точке на средней линии треугольника соответствует точка на его основании, и наоборот.

Основные математические знания

Трёх и n- мерная система координат

Представим себе, что Вы управляете дроном. Пульт управления необычен. Он имеет кнопочки, задающие движения:


Рис. 1.4. Управление дроном.


Дрон может двигаться:

на Север, на Юг,

на Запад

на Восток

Вниз

Вверх

Сам дрон имеет гирокомпас и отлично ориентируется в пространстве, ожидая Ваших команд.

Допустим, Вам требуется доставить пакет с вакциной от корнавируса на 10-ый этаж и аккуратно подать его в окно. Вы находитесь в начале координат, а пункт назначения  10 м на Восток, 10 м. на Север, и 20 м. вверх. Эти координаты можно задать так:

Пункт назначения точка P = (10, 10, 20) в координатных осях

При этом подразумевается, что мысленно мы используем оси:

Запад -Восток  ось Х

Юг- Север  ось Y

Низ-Верх  ось Z

А теперь, допустим, Вы производите запуск с балкона небоскрёба.

Если бы окно находилось по отношению к Вам на 20 м. западнее, на 5 м. южнее и на 15 м. ниже Вашего балкона, то координаты точки P = (-10, -5, -15)

Это так называемая Декартова система координат по имени математика и философа Рене Декарта. Наглядный двумерный случай Декартовой системы координат  это шахматная доска, это плоская карта местности. Каждая точка однозначно определяется двумя координатами.

Как бы Вы объяснили двумерному существу?

Как бы Вы объяснили двумерному существу третье измерение  высоту? Предположим, что в совершенно плоском мире Вы ведёте диалог с философом, имеющим богатое творческое воображение, Вы принялись бы объяснять, как можно повернуть ботинок, больше напоминающий в этом случае стельку от обуви, в третьем измерении и сделать из правого ботинка левый и наоборот.

Точно так же трёхмерный ботинок можно разверзнуть в четырехмерном пространстве и сделать правый левым, а левый  правым.

====== Знаете ли Вы что такое Флатландия? ======

«Флатла́ндия» (англ. «Flatland: A Romance of Many Dimensions»)  роман Эдвина Э. Эбботта, который вышел в свет в 1884 году. Этот научно-фантастический роман считается полезным для людей, изучающих, например, понятия о других пространственных измерениях или гиперпространствах. Как литературное произведение роман ценится из-за сатиры на социальную иерархию викторианского общества. Айзек Азимов в предисловии к одной из многих публикаций романа написал, что это «лучшее введение в способ восприятия измерений, которое может быть найдено».

По этой книге было снято несколько фильмов, в том числе одноимённый художественный фильм 2007 года, в России известный как Плоский Мир.

=======================================================

Итак, в многомерном пространстве координаты любой точки P задаются относительно начала координат выражением: P = (x1, x2, xn), а вектор соединяющий начало координат  точку (0, 0,0  0) и точку P именуется радиус вектором например A, B, C его компоненты  это координаты по осям: x1, x2,  xn

Назад Дальше