Пирамиды  источники огромной энергии по древним технологиям и возможности сейчас - Александр Матанцев 16 стр.


Резонансные кривые отличаются друг от друга амплитудой и формой  рис. 30. Изменение резонансной частоты зависит от среды, или от материала пирамиды, определяемого коэффициентом β. В свою очередь этот коэффициент связан с добротностью, при β=0, добротность максимальна. Реально, в пирамиде применены слои из разных материалов: известняка, песчаника, гранита и других. Если нужно увеличить или уменьшить резонансную частоту, то можно подобрать нужный материал. Каждая из резонансных кривых обладает своим коэффициентом затухания и добротностью. Чем выше добротность, тем уже спектр и больше по амплитуде А.

Стоячие волны в помещении [51]. Влияние параллельности стен на акустику помещения заключается в том, что прямоугольная комната представляет собой трехмерный резонатор. В качестве одномерного резонатора можно себе представить узкую трубу, закрытую с двух сторон. Если возле одной из сторон поместить источник синусоидальных колебаний, то вдоль трубы со скоростью звука будет перемещаться синусоидальная звуковая волна, отражаясь от закрытых стенок.

Поместим возле другой стенки трубы микрофон. Изменяя частоту генератора, можно заметить, что при изменении частоты амплитуда звука, фиксируемая при помощи микрофона, то нарастает, то падает почти до нуля. То есть труба демонстрирует амплитудно-частотную характеристику, по виду напоминающую гребенку, причем каждый ее зубец представляет собой акустический резонанс.

Резонанс образуется, если длина трубы кратна половине длины волны возбуждаемых колебаний. Это явление носит название гребенчатой фильтрации.

Прямоугольное помещение с физической точки зрения ведет себя точно так же, как закрытая с двух сторон труба. Разница лишь в том, что в трубе всего одно (аксиальное) направление распространения звуковых волн, тогда как в прямоугольном помещении их неисчислимое количество, причем во многих из них возникают акустические резонансы. Волны, создающие резонансы, подразделяют на три категории.

К первой категории относятся осевые (аксиальные) волны. Их подразделяют на три класса: продольные, поперечные и вертикальные. Звуковые волны каждого из этих классов отражаются только от двух противоположных стен (или от потолка и пола). Ко второй категории относятся касательные волны, которые распространяются, последовательно отражаясь от четырех стен. Последняя категория  так называемые косые волны, отражающиеся последовательно от всех шести ограждающих поверхностей.

Очевидно, что бороться с самим фактом возникновения резонансов в помещении тяжело, а зачастую и не нужно  если резонансы расположены в заданной полосе частот близко друг к другу и равномерно, то форма сигнала в этой полосе частот передается практически без искажений.

Физик-теоретик Филипп Морз вывел формулу для подсчета количества резонансных частот в заданном диапазоне частот в зависимости от объема и линейных размеров помещения [44], откуда видно, что количество резонансов помещения, приходящихся на одну и ту же полосу частот, с понижением частоты существенно уменьшается. Морз подсчитал, сколько в помещении должно быть резонансов в заданном интервале частот для того, чтобы без заметных искажений нести форму звука длительностью порядка 0,1 с. Результат его расчетов таков: в интервале Δf=10 Гц должно быть не менее 10 резонансов.

Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду. Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении. В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.

Если волны, бегущие по струне во встречных направлениях, имеют синусоидальную форму, то при определенных условиях они могут образовать стоячую волну.

Пусть струна длины l закреплена так, что один из ее концов находится в точке x = 0, а другой  в точке x1 = L (рис. 31). В струне создано натяжение T.


Рис. 31.


По струне одновременно распространяются в противоположных направлениях две волны одной и той же частоты:

y1 (x, t) = A cos (ωt + kx)  волна, бегущая справа налево;

y2 (x, t) = A cos (ωt  kx)  волна, бегущая слева направо.

В точке x = 0 (один из закрепленных концов струны) падающая волна y1 в результате отражения порождает волну y2. При отражении от неподвижно закрепленного конца отраженная волна оказывается в противофазе с падающей. Согласно принципу суперпозиции, который является экспериментальным фактом, колебания, вызванные встречными волнами в каждой точке струны, складываются. Таким образом, результирующее колебание в каждой точке равно сумме колебаний, вызванных волнами y1 и y2 в отдельности. Следовательно,

Это и есть стоячая волна. В стоячей волне существуют неподвижные точки, которые называются узлами. Посередине между узлами находятся точки, которые колеблются с максимальной амплитудой. Эти точки называются пучностями.

Оба неподвижных конца струны должны быть узлами. Приведенная выше формула удовлетворяет этому условию на левом конце (x = 0). Для выполнения этого условия и на правом конце (x = L), необходимо чтобы kL = nπ, где n  любое целое число. Это означает, что стоячая волна в струне возникает не всегда, а только в том случае, если длина L струны равняется целому числу длин полуволн: l = n (λn/2) λn = 2l/n (n = 1,2,3)

Набору значений λn длин волн соответствует набор возможных частот fn:

fn = v/ λn


где v = T/μ скорость распространения поперечных волн по струне. Каждая из частот fN и связанный с ней тип колебания струны называется нормальной модой. Наименьшая частота f1 называется основной частотой, все остальные (f2, f3, ) называются гармониками. На рис. 32 изображена нормальная мода для n = 2, а на рис. 33 показаны гармоники.

В стоячей волне нет потока энергии. Колебательная энергия, заключенная в отрезке струны между двумя соседними узлами, не транспортируется в другие части струны. В каждом таком отрезке происходит периодическое (дважды за период T) превращение кинетической энергии в потенциальную и обратно как в обычной колебательной системе. Но в отличие от груза на пружине или маятника, у которых имеется единственная собственная частота

f0 = ω0/2π

струна обладает бесконечным числом собственных (резонансных) частот fn. В соответствии с принципом суперпозиции стоячие волны различных типов (т. е. с разными значениями n) могут одновременно присутствовать в колебаниях струны.

Добротность  параметр колебательной системы, определяющий ширину резонанса и характеризующий, во сколько раз запасы энергии в системе больше, чем потери энергии за один период колебаний.

Добротность Q колебательной системы равна отношению энергии, запасенной в системе к убыли этой энергии за один период колебания.

Q = 2πW (t) /Δ W (t+T) (20)

Q = ω0W/Pd = 2πf0W/Pd (21)

где ω0  резонансная круговая частота колебаний,

f0  резонансная частота колебаний,

W  энергия, запасенная в колебательной системе,

Pd  рассеиваемая мощность.

Стоячие волны показаны на рис. 32. По существу, это графическое отображение принципа резонансной кратности


Рис. 32. Стоячие волны [54]


Рис. 33. Гармоники [55]

Резонансы в условиях генерации волн и образования стоячих волн в конструкциях пирамид с воздушным пространством

Тематика древних пирамид  одна из самых распространенных в мире, так как нет других сохранившихся официальных чудес на свете, кроме Великой пирамиды. Написано много книг, практически, во всех странах мира по этому направлению. Естественно, воспользоваться накопленными знаниями. Непосредственно по теме защиты пирамидами Землю от катастроф, автором книг не обнаружено. Однако есть статьи по данному направлению.

Кроме того, есть полное описание генераторов и интерфейсов с применением инфразвуковых колебаний, а сейсмический сигнал, как раз и является разновидностью инфразвука, так как его диапазон (до 16 Гц) входит в состав диапазона сейсмических волн.

Назад Дальше