Курс Интеллектуальные средства автоматизации. Модуль Конспект лекций и концепт-карты основных тем - Горобченко Станислав Львович 2 стр.


Процессы обработки информации в мозгу человека не совпадают с аналогичными процессами в компьютере. Информацию из внешнего мира человек получает с помощью своих органов чувств. Эта информация помещается в буфер кратковременной памяти для анализа.



Рис.1. 1. Система обработки информации у человека


Долговременная память

В области долговременной памяти хранятся символы и смысловые связи между ними, которые используются для объяснения новой информации, поступающей из кратковременной памяти.

Доступ к информации в долговременной памяти осуществляется очень эффективно. Практически любой элемент данных может быть извлечен в течение цикла обращения и затем преобразован.

Например, человек успевает отдернуть от горячей печки руку до того, как получит ожог, или при возникновении неожиданного препятствия на дороге, резко вывернуть руль автомобиля. Такой автоматизм действий объясняется использованием образов, «лежащих» в долговременной памяти.


Искусственный интеллект как область знаний

В целом, искусственный интеллект это самостоятельная область научных исследований, которая сформировалась в результате достижений в логике и математике, и основана на накопленных человечеством знаниях о живой и неживой природе.

Область научных знаний об искусственном интеллекте сформировалась в середине XX века, однако ещё в глубокой древности, и в средние века работали в этом направлении.

Таким образом, искусственный интеллект в современном понимании это совокупность методов решения разных сложностей задач, использующих принципы, аналогичные мышлению человека, способного решить данные задачи.


Как используется искусственный интеллект?

Здравоохранение. Технологии ИИ могут применяться в персонализированной медицине и при расшифровке рентгеновских снимков. Персональные медицинские помощники могут напоминать пользователям, что нужно принять лекарство, выполнить физические упражнения или перейти на более здоровый режим питания.

Промышленность. ИИ может анализировать данные IT с производственного участка, получаемые от подключенного оборудования, и прогнозировать загрузку и спрос с помощью рекуррентных сетей особого вида сетей глубокого обучения, используемых для работы с последовательными данными.

Ритейл. ИИ помогает совершать покупки онлайн с индивидуально подобранными рекомендациями, а также дает возможность продавцам обсуждать покупки с клиентами. Кроме того, технологии ИИ могут оптимизировать процессы управления товарными запасами и размещения товара.

Спорт. Тренеры получают отчеты со снимками с камер и показателями датчиков о том, как лучше организовать игру, в том числе как оптимизировать расстановку игроков и стратегию.


Принцип работы искусственного интеллекта

Принцип работы ИИ заключается в сочетании большого объема данных с возможностями быстрой, интерактивной обработки и интеллектуальными алгоритмами, что позволяет программам автоматически обучаться на базе закономерностей и признаков, содержащихся в данных. ИИ представляет собой комплексную дисциплину со множеством теорий, методик и технологий. Ее главными направлениями являются следующие:

Машинное обучение  это область знаний, исследующая алгоритмы, которые обучаются на данных с целью найти закономерности. В нем используются методы нейросетей, статистики, исследования операций и т.п. для выявления скрытой полезной информации в данных;

Нейросеть  это один из методов машинного обучения. Это математическая модель, а также её программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей сетей нервных клеток живого организма.

В глубоком обучении используются сложные нейросети со множеством нейронов и слоев. Для обучения этих глубоких нейросетей используются повышенные вычислительные мощности и усовершенствованные методики. Распространенные области применения: распознавание изображений и речи.

Когнитивные вычисления  направление ИИ, задачей которого является обеспечение процесса естественного взаимодействия человека с компьютером, аналогичного взаимодействию между людьми.

Компьютерное зрение опирается на распознавание шаблонов и на глубокое обучение для распознавания изображений и видео. Машины уже умеют обрабатывать, анализировать и понимать изображения, а также снимать фото или видео и интерпретировать окружающую обстановку.

Когнитивные вычисления  направление ИИ, задачей которого является обеспечение процесса естественного взаимодействия человека с компьютером, аналогичного взаимодействию между людьми.

Компьютерное зрение опирается на распознавание шаблонов и на глубокое обучение для распознавания изображений и видео. Машины уже умеют обрабатывать, анализировать и понимать изображения, а также снимать фото или видео и интерпретировать окружающую обстановку.

Обработка естественного языка  это способность компьютеров анализировать, понимать и синтезировать человеческий язык, включая устную речь. Сейчас мы уже можем управлять компьютерами с помощью обычного языка, используемого в повседневном обиходе. Например, используя Siri или Google assistant.

Кроме того, функционирование ИИ обеспечивают следующие технологии:


 Графика. Существование ИИ невозможно без графических процессоров, так как они предоставляют вычислительные мощности, необходимые для итеративной обработки данных. Для обучения нейросетей необходимы «большие данные» и вычислительные ресурсы.


 Интернет вещей собирает колоссальные объемы данных от подключенных устройств. Большая часть этих данных не проанализирована. Автоматизация моделей с помощью ИИ позволит использовать больше таких данных.


 Разрабатываются и по-новому комбинируются более совершенные алгоритмы, которые позволяют быстрее анализировать больший объем данных сразу на нескольких уровнях. Такая интеллектуальная обработка ключ к выявлению и прогнозированию редких событий, пониманию сложных систем и оптимизации уникальных сценариев.


 API (программные интерфейсы приложений) представляют собой переносимые пакеты кода, благодаря которым функционал ИИ может быть интегрирован в существующие продукты и пакеты программ. С помощью API можно добавить функцию распознавания изображений в домашнюю систему безопасности или вопросно-ответные функции для описания данных, создания титров и заголовков, обнаружения в данных интересных закономерностей и иной полезной информации.


Группы искусственного интеллекта




Рис. 1.2. Виды искусственного интеллекта в общей системе понятий ИИ.


 Слабый ИИ то, что уже удалось создать. Такой ИИ способен решать определённую задачу, зачастую даже лучше, чем человек.

 Сильный ИИ способность машины учиться, мыслить, чувствовать, осознавать себя и принимать решения.

 Суперинтеллект не только не создали, но и не имеем пока что ни малейшего представления, как это сделать и можно ли вообще. Это не просто умные машины, а компьютеры, которые во всём превосходят людей.


Машинное обучение

Машинное обучение это один из разделов науки об ИИ. Здесь используются алгоритмы для анализа данных, получения выводов или предсказаний в отношении чего-либо.

Для принятия решения необходимо:

 Алгоритм специальная программа, которая говорит компьютеру, что делать и откуда брать данные.

 Набор данных примеры, на которых машина тренируется.

 Признаки то, на что компьютеру смотреть при принятии решения.


Алгоритмы машинного обучения

 Линейная регрессия применяют, если есть линейная зависимость между переменными.

 Байесовские алгоритмы применение теоремы Байеса и теории вероятности.

 Нейронные сети один из методов глубокого обучения.


Глубокое обучение

 Глубокое обучение подраздел машинного обучения. Алгоритмам глубокого обучения не нужен учитель, только заранее подготовленные данные.

 Нейронные сети математические модели, созданные по аналогии с биологическими нейронными сетями. Они способны моделировать и обрабатывать нелинейные отношения между входными и выходными сигналами.


Искусственные нейронные сети



Рис. 1.3. Модель ИНС


Итоги:

Искусственный интеллект одновременно и наука, которая помогает создавать «умные» машины, и способность компьютера обучаться и принимать решения.

Машинное обучение одна из областей искусственного интеллекта. МО использует алгоритмы для анализа данных и получения выводов.

Глубокое обучение лишь один из методов машинного обучения, в рамках которого компьютер учится без учителя сама с помощью данных.

Назад Дальше