Алгоритм судного дня. Как Facebook, Google, Microsoft, Apple и другие корпорации создают искусственный суперинтеллект и почему это приведет к катастрофе - Эми Уэбб 6 стр.


Можно ли построить мыслящую машину?

К 1830-м годам математики, инженеры и ученые всерьез взялись за постройку машины, способной производить вычисления так же, как люди-«компьютеры». Английский математик Ада Лавлейс и ученый Чарльз Бэббидж изобрели «разностную машину», а позже разработали проект более сложной «аналитической машины», решавшей математические задачи путем выполнения заранее определенной последовательности шагов. Бэббидж не предполагал, что его машина будет использована для чего-либо, кроме действий над числами. Именно Лавлейс в примечаниях к научной статье, которую тогда переводила, добавила изумительно глубокий комментарий, что более мощный вариант машины можно было бы использовать иначе[24]. Если машина способна манипулировать символами, обозначающими разные вещи (например, музыкальные ноты), тогда ее можно было бы использовать для «размышления» о вещах, лежащих за пределами математики. Хотя Лавлейс не верила, что компьютер когда-либо обретет способность к самостоятельному мышлению, она предвидела создание сложной системы, умеющей выполнять инструкции и таким образом подражать человеку во многих его повседневных задачах.

В ста милях к северу от Кембриджского университета, где работали Лавлейс и Бэббидж, молодой математик-самоучка по имени Джордж Буль шел через поле в Донкастере, когда его внезапно осенило: он решил посвятить свою жизнь расширению логики человеческого мышления[25]. Во время этой прогулки родилось то, что мы сегодня называем булевой алгеброй: способ упрощения логических выражений (например, «и», «или», «не») через использование символов и чисел. Скажем, вычисление выражения «истина и истина» должно давать результат «истина», что физически могло бы соответствовать положению переключателей или крышек луз на компьютере. Булю потребовалось два десятилетия на формализацию своих идей. И еще только через сто лет кому-то пришло в голову, что булева логика в сочетании с теорией вероятностей могла бы превратить компьютеры из средства автоматизации элементарных математических операций в более сложные мыслящие машины. Технологии, позволяющей построить такую машину, еще не было отсутствовали необходимые процессы, материалы и источники энергии,  и проверить теорию на практике было невозможно.

Переход от теоретического представления о мыслящей машине к компьютерам, начавшим имитировать мышление человека, произошел одномоментно, с публикацией двух основополагающих статей: «Символический анализ релейных и переключательных схем» Клода Шеннона и «О вычислимых числах и их применении к проблеме разрешения» (Entscheidungsproblem) Алана Тьюринга. Изучая электротехнику в Массачусетском технологическом институте, Шеннон в качестве предмета по выбору взял философию, что выглядело необычно. Основным научным трудом, на который опиралась его диссертация, был трактат Джорджа Буля «Исследование законов мышления». Научный руководитель Шеннона, Вэнивар Буш, подал ему идею реализовать булеву логику в виде физических схем. Буш построил усовершенствованную версию «аналитической машины» Лавлейс и Бэббиджа она называлась «дифференциальный анализатор»,  но сконструирована она была в некоторой степени бессистемно. В то время не существовало теории, которая диктовала бы методику проектирования электрических схем. Открытие Шеннона заключалось в том, что он осуществил схемную реализацию булевой логики и объяснил, каким образом с ее помощью получить рабочую схему, способную складывать нули и единицы.

В то же время, когда Шеннон работал над переносом булевой логики на физические схемы, Тьюринг экспериментировал с «универсальным переводчиком» Лейбница, способным представлять все физическое и научное знание. Английский ученый ставил перед собой задачу доказать так называемую Entscheidungsproblem, или «проблему[26] разрешения». Упрощая, можно сформулировать ее так: не существует алгоритма, при помощи которого возможно доказать истинность или ложность произвольного математического утверждения. Ответ оказался отрицательным. Тьюринг сумел продемонстрировать, что такого алгоритма действительно не существует, но побочным результатом его работы явилась математическая модель универсальной вычислительной машины[27].

И это изменило все. Тьюринг понял, что программа и данные могут храниться внутри компьютера для 1930-х годов это было радикальной идеей. До того все сходились на мысли, что машина, программа и данные три независимые друг от друга сущности. Универсальная машина Тьюринга объясняла, почему они крепко связаны друг с другом. Если смотреть на вещи механически, логика управления схемами и переключателями тоже может быть закодирована в программе и данных. Подумайте на секунду о важности этих утверждений. Контейнер, программа и данные оказались объединены в рамках общей сущности подобно тому, как обстоит дело у людей. Мы тоже контейнеры (наши тела), программы (автономные функции клеток) и данные (наша ДНК в сочетании с прямой и косвенной информацией, поставляемой органами чувств).

И это изменило все. Тьюринг понял, что программа и данные могут храниться внутри компьютера для 1930-х годов это было радикальной идеей. До того все сходились на мысли, что машина, программа и данные три независимые друг от друга сущности. Универсальная машина Тьюринга объясняла, почему они крепко связаны друг с другом. Если смотреть на вещи механически, логика управления схемами и переключателями тоже может быть закодирована в программе и данных. Подумайте на секунду о важности этих утверждений. Контейнер, программа и данные оказались объединены в рамках общей сущности подобно тому, как обстоит дело у людей. Мы тоже контейнеры (наши тела), программы (автономные функции клеток) и данные (наша ДНК в сочетании с прямой и косвенной информацией, поставляемой органами чувств).

В то же время давняя традиция конструирования автоматов, что началась с маленького монаха, умевшего ходить и молиться, наконец встретилась с работой Тьюринга и Шеннона. Американская промышленная компания Westinghouse построила робота, выполненного на базе электрических реле, для Всемирной выставки 1939 года. Робота звали Elektro the Moto-Man, «механический человек Электро». Он выглядел как гигантская человекоподобная фигура золотистого цвета и довольно грубой формы. Под ногами у него были колеса. Внутри находились 48 реле, используемых в телефонной коммутации.

Электро умел реагировать на команды, подаваемые ему голосом по телефонной трубке, воспроизводя заранее записанные ответы на встроенном проигрывателе. Он представлял собой антропоморфный компьютер, способный принимать элементарные решения например, что сказать без непосредственного участия человека в данный момент.

Из газетных заголовков, научно-фантастических рассказов и кинохроники того времени видно, что люди были застигнуты врасплох, потрясены и напуганы подобным развитием событий. Для них происходящее выглядело так, словно эра «мыслящих машин» во всей своей полноте наступила в один день. Фантаст Айзек Азимов опубликовал пророческий рассказ «Лжец» в выпуске журнала Astounding Science Fiction за май 1941 года. Рассказ был его реакцией на достижения науки, свидетелем которых он оказался, и в нем Азимов впервые сформулировал знаменитые Три закона робототехники[28].

1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.

2. Робот должен повиноваться командам человека, если эти команды не противоречат Первому закону. 3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому или Второму законам.

Позже Азимов добавил так называемый Нулевой закон.

0. Робот не может причинить вред человечеству или своим бездействием допустить, чтобы человечеству был причинен вред.

Мыслит ли мыслящая машина?

В 1943 году ученые-психиатры Уоррен Маккалоу и Уолтер Питтс из Чикагского университета опубликовали важную статью «Логическое исчисление идей, присущих нервной деятельности», где описывалась система нового типа, моделирующая живые нейроны при помощи нейронной сети простой архитектуры. Если контейнеры, программы и данные крепко связаны между собой, как утверждал Тьюринг, и если люди представляют собой аналогичные элегантно сконструированные контейнеры, следовательно, можно построить мыслящую машину, если смоделировать часть человеческого тела, ответственную за мышление,  мозг. Они сформулировали современную вычислительную теорию разума и мозга, «нейронную сеть». Вместо того чтобы сосредоточиться на идеях аппаратного и программного обеспечения, они предложили систему нового типа, способную перерабатывать огромные объемы данных, в точности как это делаем мы. Мощности компьютеров еще не хватало, чтобы проверить их теорию, но статья вдохновила других, начавших работу над разумными компьютерными системами.

Связь между разумными компьютерными системами и автономным принятием решений прояснилась благодаря публикации обширного трактата по прикладной математике, вышедшего из-под пера Джона фон Неймана, американского полимата венгерского происхождения, специалиста в области кибернетики, физики и математики. В 1944 году Нейман в соавторстве с Оскаром Моргенштерном, экономистом из Принстонского университета, выпустил книгу объемом в 640 страниц, где подробнейшим образом рассказывалось, как теория игр объясняет основы любых экономических решений[29]. Именно благодаря этой работе фон Неймана пригласили сотрудничать с Вооруженными силами США, в то время занимавшимися разработкой электрической вычислительной машины нового типа, «Электронного числового интегратора и вычислителя», сокращенно ЭНИАК. Вначале инструкции, предназначенные для машины, реализовывались постоянными соединениями внутри нее, поэтому с каждой новой программой соединения во всей системе нужно было переделывать заново. Вдохновленный трудами Тьюринга, Маккалоу и Питтса, фон Нейман разработал новую систему хранения программ на самом компьютере. Тем самым совершился переход от первой эпохи развития вычислительной техники (табуляции) к новой эпохе программируемых систем.

Назад Дальше