Генезис. Небо и Земля. Том 1. История - Максим Филипповский 9 стр.


§53. Рене Декартом (1644) в «Первоначалах философии» были обозначены законы движения. [85] Первый из Декартовых законов утверждает, что любая простая и неделимая вещь пребывает в неизменности, если не встречается с другой, которая изменяет ее своим воздействием. Согласно второму, изначальное движение тела  движение по прямой. Третий закон добавляет, что при столкновении одного тела с другим, более сильным, первое ничего не теряет в своем движении, при столкновении же с более слабым оно теряет в своем движении ровно столько, сколько сообщает этому телу. [86] Декарт критиковал методы, которые применяли Роберваль и Пьер Ферма, а Роберваль ответил на это взаимной критикой методов, которые вводил в геометрию Декарт.

§54. Пьер Ферма (1660) обобщил законы геометрической оптики и постулировал, что в пространстве между двумя точками луч света пойдет по тому пути, вдоль которого время его прохождения минимально. [87] Он вывел, что в однородной среде скорость света величина неизменная, а наименьшее время прохождения светом дистанции между двумя точками совпадает с движением по самому короткому расстоянию, значит по прямой линии. Ранее этот принцип, рассмотренный в I веке Героном Александрийским36 для отражения света, в своем общем виде был предложен Ферма в качестве закона геометрической оптики, из которого следовали уже известные законы: прямолинейность луча света в однородной среде, законы отражения и преломления света на границе двух прозрачных сред. [88,89]

§55. В 1665 году одновременно и независимо друг от друга Роберт Гук и Франческо Мариа Гримальди высказали идею о волнообразном распространении света. Их открытия дифракции37 и интерференции38 света, а также поперечного характера световых волн легли в основу волновой теории света. [90,91] В своей работе Микрография Гук постулировал, что «свет  это не что иное, как ударная волна, которая распространяется через однотипную, однородную и прозрачную среду, и этот цвет является не чем иным, как нарушением этого света преломлением. Гук произвел открытие цветов тонких плёнок (то есть, в итоге, явления интерференции света), высказал идею о волнообразном распространении света (практически одновременно с Гюйгенсом). Гук описал цветовые явления и цветные кольца, которые он наблюдал при экспериментах с минералом москвич, раковинах устриц и другие тонких слоев, и которые также возникли, когда он нажал два куска стекла вместе. Он также объяснил, как создаются наблюдаемые цвета.

§56. Джованни Доминико Кассини (1668), поводя итог своим измерениям (16641666) периодов обращения Юпитера и Марса вокруг своих осей, обнаружил расхождения в своих данных, которые сначала он приписал свету с конечной скоростью: « свету требуется некоторое время, чтобы дойти от спутника до нас, и примерно десять или одиннадцать минут, чтобы пройти расстояние, равное полудиаметру земной орбиты». [92] Однако Кассини был слишком традиционен в своих взглядах, чтобы принять свою собственную идею, и вскоре он отверг ее и стал искать другое объяснение этому несоответствию. Впоследствии данные Кассини использовались Рёмером при расчете скорости света семь лет спустя, который в своих наблюдениях Юпитера установил, что планета сплюснута у полюсов.

§57. Датский учёный Расмус Бартолин (1669) обнаружил явление двойного лучепреломления, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным), но объяснения ему дать не смог. [93] Через двадцать лет после опытов Бартолина, его открытием заинтересовался Гюйгенс, который дал объяснение явлению двойного лучепреломления на основе своей волновой теории света.

§58. Игнас-Гастон Пардис (1672) дал волновое объяснение преломлению света в противовес корпускулярной теории света Ньютона, обратившись к гипотезе Гримальди о расширяемости преломленного луча и к теории волнения Гука. [94,95] Его карты звездного неба весьма красочно показали наблюдаемый и трактуемый мир созвездий. [96]

§59. В результате своих наблюдений Солнца Джованни Кассини (1672) составил довольно точные солнечные таблицы и дал описание светила. [97] Ученый интересовался также величиной солнечного параллакса, то есть величиной угла, под которым с Солнца виден экваториальный радиус Земли. С помощью вычисленного параллакса Кассини определил расстояние от Земли до Солнца. По его расчетам это расстояние равно 146 миллионам километров (по современным данным около 149,6 миллионов километров).

§58. Игнас-Гастон Пардис (1672) дал волновое объяснение преломлению света в противовес корпускулярной теории света Ньютона, обратившись к гипотезе Гримальди о расширяемости преломленного луча и к теории волнения Гука. [94,95] Его карты звездного неба весьма красочно показали наблюдаемый и трактуемый мир созвездий. [96]

§59. В результате своих наблюдений Солнца Джованни Кассини (1672) составил довольно точные солнечные таблицы и дал описание светила. [97] Ученый интересовался также величиной солнечного параллакса, то есть величиной угла, под которым с Солнца виден экваториальный радиус Земли. С помощью вычисленного параллакса Кассини определил расстояние от Земли до Солнца. По его расчетам это расстояние равно 146 миллионам километров (по современным данным около 149,6 миллионов километров).

§60. Роберт Гук (1674) высказал идею закона всемирного тяготения в работе «Попытка доказать движение Земли наблюдениями». [98] Он изложил взгляды, весьма близкие к тем, которые затем были развиты Ньютоном в «Началах». Приоритет Гука оспаривался Ньютоном, но, по-видимому, не в части формулировки  сила тяготения обратно пропорциональна квадрату расстояния; кроме того, Ньютон утверждал о независимом и более раннем открытии этой формулы, которую, однако, до открытия Гуком никому не сообщал. При этом первая публикация Гука о силе тяготения как о возможной причине эллиптичности орбит планет относится к 1666 году.

§61. Роберт Бойль (1674) в своем трактате по сравнению теологии и естествознания рассуждая по вопросу межзвездной части неба обратил внимание, что некоторые из современных ему эпикурейцев считают, что она пуста, за исключением тех мест, где лучи света (и, возможно, некоторые другие небесные испарения) проходят через нее; а картезианцы, напротив, думают, что она полна эфирной материи, которую некоторые сторонники их философии считают только гипотезой. [99] Он признает, что «существует столь большая диспропорция между небесами и землей, что некоторые современные люди считают, что Земля немногим лучше точки по сравнению даже с шаром солнца; а картезианцы и другие коперникианцы думают, что сам большой шар (который равен тому, что за Птолемеем называли Солнечным шаром) является просто точкой в сравнении с небесным сводом; и все наши астрономы согласны, по крайней мере, с этим: Земля  всего лишь физическая точка по сравнению со звездным небом. Как мало должно быть наших знаний, которые оставляют нас в неведении о столь многих вещах, касающихся огромных тел над нами, и проникают таким коротким путем даже в землю под нами, что, кажется, ограничиваются малой долей поверхностной части физической точки! Естественным результатом этого будет то, что, хотя то, что мы называем нашим знанием, может считаться большой наградой для наших умов, оно не должно раздувать их; и что то, что мы знаем о системе и природе материальных вещей, не настолько совершенно и удовлетворительно, чтобы оправдать наше презрение к открытиям духовных вещей».

§62. Датский астроном Олаф Кристенсен Рёмер (1676), проводя наблюдения затмений, заметил, что моменты затмений сдвигаются во времени в зависимости от положения Земли на орбите, а именно, когда Земля находится ближе к Юпитеру, моменты затмений наступают ранее усреднённых на больших интервалах времени средних значений, а когда Земля находится дальше от Юпитера  отстают. Для объяснения этих колебаний моментов затмений Рёмер предположил, что скорость света конечна, и рассчитал39 её по результатам своих наблюдений. [100]

§63. Принцип Ферма является предопределяющим для принципа Гюйгенса  Френеля в волновой оптике для случая исчезающе малой длины волны света, исходя из которого каждая точка, до которой доходит световое возбуждение, является, в свою очередь, центром вторичных волн; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны. [101] Христиан Гюйгенс в своем «Трактате о свете» (1678) объяснил прямолинейность распространения света и вывел законы отражения и преломления. [102] Гюйгенс рассказал о поляризации поперечных волн, что описывает поведение вектора колеблющейся величины в плоскости, перпендикулярной направлению распространения волны. Поскольку в продольной волне поляризация возникнуть не может, то направление колебаний в волнах этого типа всегда совпадает с направлением распространения. По его же закону независимости световых пучков эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки или они устранены. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (такой осью обладают далеко не все кристаллы). В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей. Несколькими годами после Малюса, Био открыл вращение плоскости поляризации, которое сам же и объяснил на основе теории Малюса. Явление поляризации считалось доказательством корпускулярной теории света и опровержением волновой теории. Но в 1815 году Ампер сказал Френелю, что поляризацию можно объяснить, предположив, что эфир совершает поперечные колебания. В 1817 году ту же гипотезу выдвинул Юнг. В 1816 году дополнил принцип Гюйгенса, введя представление о когерентной40 интерференции элементарных волн, излучаемых вторичными источниками (принцип Гюйгенса  Френеля). В 1817 году Френель узнает об идее Юнга, связанной с необходимостью рассмотрения поперечных колебаний. Вплоть до 1818 года все исследования Френеля опираются на представления о продольных световых колебаниях, а начиная с 18181819 годов, исследования Френеля опираются уже исключительно на представления о поперечных волнах. Исходя из этого принципа в 1818 году Френель разработал теорию дифракции света, на основе которой предложил метод расчёта дифракционной картины, основанный на разбиении фронта волны на зоны (так называемые зоны Френеля). С помощью этого метода он рассмотрел задачу о дифракции света на краю полуэкрана и круглого отверстия. [103]

Назад Дальше