Нейросетевые технологии
Конспект
Александр Кириченко
© Александр Кириченко, 2022
Проблемы подготовки нейроконструкторов
Дисциплина «Нейросетевые технологии» строится на использовании нейронов элементов, устройство которых и принцип действия подсмотрены у природы.
Из истории искусственных нейронных сетей известно, что в 1791 году итальянский врач, анатом и физиолог, один из основателей электрофизиологии Луиджи Гальвани (17371798) издал «Трактат об электрических силах при мышечном движении», основанный на его выводах о наличии в живых организмах гальванического электричества.
С этим было связано начало активного изучения нервной системы живых организмов.
Среди используемых инструментов в дальнейшем самым значительным стало появление электронных вычислительных машин.
В основе всех компьютеров с 1940-х годов лежала архитектура фон Неймана с разделенными процессингом и памятью. В 1956 году на конференции в Дортмунде было принято решение об образовании нового научного направления в программировании под названием «искусственный интеллект (ИИ)».
В 1980 году Япония объявила о создании вычислительных систем 5 поколения. Предполагалось, что создаваемые вычислительные системы кроме обычных компьютеров будут содержать машины логического вывода, базу знаний, систему общения, а создаваемые вычислительные системы будут оснащаться интеллектуальными блоками аналогами человеческого интеллекта, человеческой интуиции. Для этого в программном обеспечении систем 5 поколения активную роль будут играть средства искусственного интеллекта.
Что собой представляет интеллект, за счёт чего и как он появляется, нигде не сформулировано, науке пока неизвестно. Тем более, что должен представлять собой искусственный интеллект (ИИ), тоже однозначно не определено. Предполагается, что интеллект это продукт деятельности мозга.
Продолжительный период эволюции придал мозгу человека много качеств, отсутствующих в современных компьютерах с архитектурой фон Неймана. К ним относятся:
способность к обучению и обобщению
ассоциативность и адаптивность
толерантность к ошибкам
С появлением современной электроники начались попытки аппаратного моделирования нейрофизиологических процессов, в том числе и перечисленных.
Считается, что базовым элементом мозга человека являются специфические клетки, известные как нейроны, способные думать и применять предыдущий опыт к каждому действию, что отличает их от остальных клеток тела.
Структурный подход к моделированию мозга реализуется на нескольких уровнях (этапах).
Вначале создается информационная модель отдельной нервной клетки искусственного нейрона (ИН), что составляет первый уровень нейронного моделирования. Что эта клетка собой представляет, изложено в разных публикациях. Так, в https://ailab.ru/ Александр Бахшиев описал концепцию применения биоподобных моделей нейронов для управления робототехническими системами. К числу перспективных моделей нейрона принадлежит и модель В.Б.Вальцева, исследование которой проводилось разными научными коллективами, результаты которых так же отражены в Интернет.
Ограниченное число искусственных нейронов далее могут структурироваться в жесткие необучаемые конфигурации искусственные нейронные ансамбли (ИНА), что составляет второй уровень нейронного моделирования. В их состав входят ИНА, реализующие функции:
выбора максимального или минимального входного сигнала,
оценки эквивалентности (равенства) входных сигналов,
классификации
ранжирования (сортировки)
прогнозирования
и др.
Наконец, создаются конфигурации из большого числа искусственных нейронов, которые с помощью специальной процедуры обучения могут гибко изменять свои параметры. Такие конфигурации называются искусственными нейронными сетями (ИНС). Они составляют третий уровень нейронного моделирования.
На четвёртом уровне создаются комплексы, содержащие большое количество нейронных сетей различного назначения и оформляются в виде нейросетевых моделей, систем управления, и т.д., вплоть до нейрокомпьютеров.
Множество проблем, не поддающиеся решению традиционными компьютерами, могут быть эффективно решены с помощью нейросетей.
Что касается нейросетевых технологий, то в 1943 г. вышла статья нейрофизиолога Уоррена Маккалоха (Warren McCulloch) и математика Уолтера Питтса (Walter Pitts) про работу искусственных нейронов и представление модели нейронной сети на электрических схемах. В настоящее время предпринимаются попытки реализовать на них свойства искусственного интеллекта.
Интеллект это совокупность умственных способностей живого организма, обеспечивающих успех его познавательной деятельности. Интеллект обычно связан с мышлением. Поэтому ожидается, что новое изделие, в котором появился искусственный интеллект становится более умным, что в нём появляется какая-то особенная новизна, необычность, появление невиданных ранее свойств.
Чем искусственный интеллект отличается от естественного интеллекта, которым обладает человек? Если бы понимать сущность и причины этих отличий, можно было бы повысить эффективность обучения при подготовке квалифицированных нейроконструкторов людей, которых мы обучаем в «Нейросетевых технологиях»:
конструированию нейрокомпьютеров,
нейросетевым исследованиям хозяйственных процессов,
моделированию интеллекта высшей нервной системы человека.
Естественным для человека является использование основных принципов мозга ассоциативное мышление, использование принципов обучения (самообучения) и адаптации, использование связей «если то», «посылка следствие», лежащих в основе распознавания, управления, принятия решений. До начала использования ИИ они не применялись в компьютерах.
По мере развития искусственного интеллекта появлялись новые его свойства и проявления, новые нейроконструкции. Появилось и новое понятие: нейрокомпьютер.
Конструктивными элементами нейрокомпьютеров являются такие физические компоненты, как нейроны, искусственные нейронные сборки, нейросети, а так же обслуживающие их операционные системы, программы для создания нейросреды, нейропакеты. К конструктивным элементам нейрокомпьютеров относятся и алгоритмы выполнения интеллектуальных операций, и типовые сценарии, и модели выполняемых с помощью нейросетей работ. Они характеризуют состав решаемых проблем.
Раньше считалось, что основной особенностью искусственных нейросетей является «обучение на примерах». Впоследствии к этой их особенности добавилась возможность моделировать получение новых знаний, извлечение их и представление в виде правил продукции, выполнение довольно сложных операций при обработке знаний, в число которых входят накопление, классификация, прогнозирование, и др.
При сопоставлении естественного и искусственного интеллекта (ЕИ и ИИ) обращает на себя внимание, что они имеют совершенно разные целевые направленности. Для ЕИ главное это поддержание и сохранение жизни. А для ИИ этих проблем чаще всего нет. Но в ЕИ очень активно используются такие методы работы со знаниями, о которых специалисты по искусственному интеллекту даже не думают.
Интуиция, внимание, сознание, подсознание, смысл, ассоциации, понимание, осмысление, в искусственном интеллекте практически неизвестны.
Глубоко не используется логическое мышление.
Практически не используются образное и интуитивное мышления, которые вместе выполняют более половины функций, используемых в естественном интеллекте.
Очень широко в естественном интеллекте работает такая разновидность знаний, как эмоции, а в искусственном интеллекте её просто нет.
Можно ли каким-то образом определить, что ещё может дополнить эти различия?
Летом 1994 г. научным обществом был проведен Всемирный конгресс по нейронным сетям, на котором были определены следующие направления фундаментальных исследований по нейросетевым технологиям:
Интеллектуальность нейросетевых конструкций
Биологическое зрение. Работа с объектами зрительной сцены живого мира.
Машинное зрение. Раздел охватывает аспекты моделирования зрительных функций в технических системах. Особое внимание уделеняется принципам избирательного внимания к компьютерным объектам зрительной сцены.
Речь и язык. Различные аспекты синтеза и распознавания речи.
Биологические нейронные сети. Тематика раздела охватывает свойства отдельных нейронов, нейронных сетей управления движением и слухом, аспекты обучения в биологических сетях, а также пути перехода от биологических нейронов к искусственным (кремниевым).