Внешняя сторона проявления силовых способностей в условиях спортивной деятельности детально рассмотрена в биомеханике (Д. Д. Донской, В. М. Зациорский, В. В. Кузнецов). Мы обратимся к сведениям из физиологии и биохимии, которые имеют важное значение для понимания роли силовых способностей в совершенствовании выполнения движений (перемещений) спортсмена и разработки соответствующей методики спортивной тренировки.
«Сила сокращения скелетных мышц связывается как минимум с тремя группами физиологических факторов центрально-нервными, организующими возбуждающие влияния на мотонейроны и регулирующими взаимодействие мышц; периферическими, определяющими сократительные свойства и текущее функциональное состояние мышц; энергетическими, обеспечивающими механический эффект сокращения мышц (Ю. В. Верхошанский).
Роль центрально-нервных факторов в проявлении силового напряжения выражается:
в регулировании частоты импульсации;
степени синхронизации возбуждающих влияний на мотонейроны;
количестве рекрутируемых двигательных единиц (ДЕ) (внутримышечная координация);
в согласовании активности вовлекаемых в сокращение мышечных групп (межмышечная координация).
Повышение мышечной силы определяется преимущественно развитием адаптационных изменений на уровне ЦНС, приводящих к повышению способности моторных центров мобилизовать большее число мотонейронов и совершенствованию межмышечной координации.
Предполагается, что при тренировке происходит вовлечение в активность заторможенных ранее мотонейронов, что и увеличивает число моторных единиц, участвующих в сокращении мышцы (М. Jkai, A. Steinhaus, 1961).
Причем при сильных кратковременных сокращениях взрывного характера важную роль играет совпадение (синхронизация) отдельных нервных импульсов во времени. Чем больше таких совпадений в сократительных циклах разных ДЕ в начале развития напряжения мышц, тем быстрее оно нарастает. Синхронизация импульсной активности мотонейронов отмечается, начиная с величины усилия, равного 20% от максимального (Р. С. Персон; R. Schmidt).
Межмышечная координация при силовых проявлениях совершенствуется за счет вовлечения в содружественную работу большого числа мышц; ограничения активности мышц-антагонистов в суставах; рациональной последовательности включения в работу мышц кинематической цепи; усиления активности мышц, обеспечивающих фиксацию в суставах, в которых не требуется движение; выбора оптимальной амплитуды рабочего движения и той ее части, где целесообразно акцентировать усилие; согласования акцентов усилий в разных кинематических цепях; использования упругих свойств мышц (неметаболической энергии). Тем самым увеличивается результирующий силовой момент, усилие концентрируется во времени и рационально проявляется по ходу движения
К периферическим факторам, влияющим на силовые способности, относится, прежде всего, соотношение быстрых и медленных волокон в мышцах, поперечное сечение волокна, эластичности мышц и сухожилий, плотность капилляров мышцы, а также количественное содержание энергетических субстратов и их доступность для вовлечения в метаболические процессы; в тех мышечных группах, которые привлекаются к работе.
Различия в величине и скорости развиваемого усилия в значительной мере обусловлены функциональными свойствами сократительного аппарата скелетных мышц. Они определяются, в частности, длительностью активного состояния мышц, т. е. продолжительностью химико-механических изменений в сократительном (миофибриллярном) аппарате мышечных волокон в результате возбуждения, вследствие чего в нем возникает и поддерживается механическая тяга. Временное течение активного состояния различно в быстрых и медленных мышечных волокнах и находится в обратной связи со скоростью их сокращения.
Максимальное усилие (динамическое, изометрическое, изокинетическое) мобилизует все типы мышечных волокон. Как быстрые, так и медленные волокна участвуют в развитии изометрической силы, ее величина определяется не столько соотношением медленных и быстрых волокон, в мышцах, сколько количеством активизированных мышц, причем, чем больше медленных волокон вовлекается в сокращение, тем выше изометрическая сила (J. Karlsson et. al., 1975).
Силовая тренировка с большим весом отягощения и небольшим количеством повторений мобилизует значительное число быстрых мышечных волокон, в то время как тренировка с небольшим весом и большим количеством повторений активизирует как быстрые, так и медленные волокна. Причем в первом случае уменьшается время сокращения мышц [23].
Различия в величине и скорости развиваемого усилия в значительной мере обусловлены функциональными свойствами сократительного аппарата скелетных мышц. Они определяются, в частности, длительностью активного состояния мышц, т. е. продолжительностью химико-механических изменений в сократительном (миофибриллярном) аппарате мышечных волокон в результате возбуждения, вследствие чего в нем возникает и поддерживается механическая тяга. Временное течение активного состояния различно в быстрых и медленных мышечных волокнах и находится в обратной связи со скоростью их сокращения.
Максимальное усилие (динамическое, изометрическое, изокинетическое) мобилизует все типы мышечных волокон. Как быстрые, так и медленные волокна участвуют в развитии изометрической силы, ее величина определяется не столько соотношением медленных и быстрых волокон, в мышцах, сколько количеством активизированных мышц, причем, чем больше медленных волокон вовлекается в сокращение, тем выше изометрическая сила (J. Karlsson et. al., 1975).
Силовая тренировка с большим весом отягощения и небольшим количеством повторений мобилизует значительное число быстрых мышечных волокон, в то время как тренировка с небольшим весом и большим количеством повторений активизирует как быстрые, так и медленные волокна. Причем в первом случае уменьшается время сокращения мышц [23].
При длительной силовой тренировке процентное распределение быстрых и медленных волокон не изменяется. Однако отмечается изменение объема волокон обоих типов и увеличение отношения площади, занимаемой быстрыми волокнами, к площади медленных волокон, что указывает на специфическую гипертрофию быстрых волокон. Так, у тяжелоатлетов удельная площадь, занимаемая быстрыми волокнами, достигает 70% (P. Tesch et al., 1984). В целом рабочая гипертрофия мышц выражается в увеличении их физиологического поперечника за счет увеличения объема миофибрилл, т. е. собственно сократительного аппарата мышечных волокон, утолщения волокон типа и отчасти их продольного расщепления (М. Me. Donagh, С. Davies, П. Гудзь). При этом внешний объем мышц может увеличиваться незначительно, поскольку, во-первых, повышается плотность укладки миофибрилл в мышечном волокне и, во-вторых, уменьшается толщина кожно-жирового слоя над тренируемыми мышцами [23].