2. Предполагаем доминантные и рецессивные признаки «интуитивно» или замечая строгие закономерности.
3. Обращаем внимание на особенности: летальные сочетания генов, неполное доминирование, сцепление генов, кроссинговер, наследование, связанное с полом, группы крови.
4. Предполагаем генотипы родительских особей. Если генотип может быть вариативен (доминантная гомозигота или гетерозигота), то запишите А_ (вместо прочерка затем поставите недостающую букву).
5. Обозначаем скрещивание родителей (Р:), далее пишем сначала женскую особь (так принято), знак скрещивания, мужскую особь. Пол указывается всегда, если наследование связано с полом (X или Y-хромосомой), или если в задаче есть четкое указание на пол, хотя задача и не на связь с полом: «мужчина», «женщина», «кошка», «кот» и т.д. Если пол особей не имеет значения (обычно для скрещивания растений), то его можно не указывать.
6. Обозначаем гаметы (G:). В каждую гамету из каждой пары генов попадает лишь одна аллель (буква). Если предположили наличие сцепления генов и кроссинговера, то учитываем это. Для сцепленных генов количество гамет меньше, для кроссинговера обозначаем кроссинговерные гаметы.
7. Обозначаем потомство (F1 для первого поколения, F2 для второго поколения). Комбинируем гаметы родителей либо методом перебора, либо заполняя решетку Пеннета. При наличии летальных комбинаций генов потомки не указываются в случае смерти на эмбриональной стадии и указываются, если погибают в раннем возрасте.
8. Обозначаем фенотипы потомков.
9. Прописываем остальные скрещивания как в пунктах 2-8.
10. Отвечаем на вопросы задачи, указывая проявления законов Менделя, если такое спрашивают.
11. На вопрос «укажите характер наследования признаков» прогоняем задачу по пунктам: наличие/отсутствие летальных комбинаций генов, наличие/отсутствие явления неполного доминирования, наличие/отсутствие сцепления генов (в случае наличия сцепления генов указать наличие/отстутствие кроссинговера), наличие/отсутствие наследования признаков в половых хромосомах. В случае задач на кодоминирование данный вопрос не задается.
Мы закончили Раздел 1. Далее в Разделе 2 мы научимся решать классические задачи на дигибридное скрещивание, после чего на их основе разберем задачи на летальные сочетания генов, неполное доминирование, сцепление генов и нарушение сцепения генов (кроссинговер). Затем обратимся к задачам, в которых фигурируют половые хромосомы. В конце Раздела 2 мы разберем задачи на кодоминирование. Каждая глава Раздела 2 построена по следующему принципу: сначала идут подсказки для решения конкретной модели задач, далее приводится полное решение одной задачи, после чего вам для решения предлагаются трb задачи. После каждой главы представлены решения задач.
Раздел 2. Модели задач
Классическое дигибридное скрещивание
Это самый базовый тип задач. Не научившись решать его, не стоит переходить к последующим задачам, поскольку практически все задачи в генетике базаруются на классических задачах по третьему закону Менделя. В ЕГЭ встречаются именно задачи на дигибридное скрещивание, частично или полностью копирующие наш пример на третий закон Менделя.
Демонстрационная задача на классическое дигибридное скрещивание
Гены окраски и структуры поверхности семян наследуются независимо друг от друга. При скрещивании гороха с зелеными гладкими семенами и гороха с желтыми морщинистыми семенами все потомство было с зелеными гладкими семенами. Гибридов первого поколения скрестили между собой, получили четыре фенотипические группы. Составьте схемы скрещиваний, определите генотипы родительских особей, генотипы и фенотипы потомства. С какой вероятностью среди гибридов второго поколения возможно появление гороха с зелеными морщинистыми семенами? Какие законы наследования проявляются в первом и втором скрещиваниях? Укажите характер наследования признаков.
Егор Советников
Биология. Генетика. Полный теоретический и практический курс
Введение
Задачи по генетике являются неотъемлемой частью любого варианта ЕГЭ по биологии и регулярно изучаются в школе на уроках. В структуре ЕГЭ по биологии задачам по генетике отведено два номера: задание 4 и задание 28, что суммарно дает 4 первичных балла. Это довольно много, учитывая шаблонность и алгоритмичность данных заданий.
В учебном пособии мы изучим теоретические основы генетики, необходимые для решения задания 28, а затем закрепим их с помощью решения большого числа задач. Что касается задания 4 то его выполнение не вызывает трудностей у учеников, успешно решающих задание 28, поэтому отдельная подготовка к заданию 4 не требуется.
Пособие состоит из трех разделов. Раздел 1 посвящен теоретическим основам генетики. Начинайте с него, если никогда не изучали генетику или имеете слабый уровень по генетике. Если вы умеете решать типичную задачу на дигибриное скрещивание, то можете сразу приступать к Разделу 2. Если вы отлично справляетесь с типичными задачами ЕГЭшного формата, то сразу переходите к Разделу 3, где вас ждут самые нестандартные задачи по генетике.
Учебное пособие все еще находится в стадии разработки, поэтому в нем отсутствуют некоторые разделы и пояснения, могут быть допущены ошибки фактического плана. Любые ваши замечания и пожелания я с удовольствием и благодарностью приму в письменном виде по почте egorsovetnikov@mail.ru или в социальной сети «Вконтакте» vk.com/egorsovetnikov
Я искренне желаю, чтобы каждый из читающих заинтересовался генетикой и отлично сдал предстоящие экзамены.
Успехов и удачи!
Раздел 1. Теория
Основные понятия с объяснениями
Признак любая особенность организма, начиная от строения клетки и протекающих в ней биохимических реакций, заканчивая анатомией всего организма, вплоть до черт характера или заболеваний. В основе признаков лежат белки. За какие-то признаки отвечает один белок, за какие-то много.
Фенотип совокупность признаков организма (не всех, а именно тех, которые рассматриваются в задаче).
Ген единица наследственного материала. С точки зрения материи это часть хромосомы, очень длинная последовательность нуклеотидов ДНК, с которой в дальнейшем может считаться РНК и произойти синтез белка. То есть, это «чертеж» будущего белка, который может отвечать за какой-нибудь конкретный признак. Обозначается какой-нибудь буквой, желательно попроще («A» или «а», но никак не «J» или «w», хотя этого никто не запрещает).
Генотип совокупность генов организма (не всех, а именно тех, которые рассматриваются в задаче).
Таким образом, схему синтеза белка из цитологии:
ДНК РНК Белок
Можно преобразовать в схему проявления признака в генетике:
Ген Белок Признак
Но сам белок нас редко будет интересовать, поэтому упростим еще сильнее:
Ген Признак
Но в генетике есть усложнение, которого нет в цитологии не с любой последовательности ДНК будет считываться РНК и синтезироваться белок. Поэтому схема сложнее:
«Крутые» гены Признак
«Некрутые гены» Нет признака
В чем разница между «крутыми» и «некрутыми» генами? В том, что «крутые» гены подавляют работу «некрутых».
Все гены работают парами (иногда из этого есть исключения). Один ген достается от мамы, другой от папы (иногда и из этого есть исключения, но это не про однополые браки). Получается, каждый ген в паре получен от одного из родителей. Вот один этот ген называется аллелью, а пара генов аллельными генами.
Аллель форма одного и того же гена, представленная в одной хромосоме. Обозначается одной буквой (например, «А» или «а»).
Аллельные гены парные гены, различные формы одного гена (большая буква или маленькая буква).
На материальном уровне это объясняется следующим. У тебя 46 хромосом (если больше или меньше, то у меня для тебя плохие новости). Хромосомы сидят в ядре парами. Хромосомы в паре очень похожи друг на друга по размеру и форме (прямо как ты и пирожок с картошкой в школьной столовке). Такие хромосомы называются гомологичными. В каждой гомологичной хромосоме есть локусы одинаковые места. Вот последовательности ДНК в этих локусах в каждой из гомологичных хромосом и есть понятие аллели. А обе последовательности ДНК называются аллельными (парными) генами.
Обратите внимание, что привычное изображение хромосом в виде Х-образных структур это их визуализация в интерфазе митоза или мейоза, где они удвоены. На самом деле хромосома состоит из одной молекулы ДНК, покрытой белками и выглядит как лопасть пропеллера.