В нашем мире присутствуют как случайность, беспорядочность, так и упорядоченность, и усложнение. Так что же первично, хаос или порядок? Для ответа на этот вопрос, необходимо выяснить в каком виде существует первичная реальность, и от какого критерия зависит наличие в ней либо хаоса, либо порядка.
Развитие топологии (науки о пространстве) позволило установить глобальный параметр, определяющий характер этих процессов в действительности размерность пространства. Пространство может иметь любую размерность вплоть до N. И это ни метафора, и ни выверт математической мысли. Так, пространство нашей Вселенной имеет девять измерений, шесть из которых свёрнуты и образуют сложный топологический конструкт [30]. Они обнаруживают себя на планковском уровне масштаба, составляющим 10-35 м, в то время как трёхмерное пространство в момент Большого взрыва претерпело инфляцию (раздувание) и продолжает расширяться, это макро- и мегамир, в котором мы живём. Топологией установлено, что если размерность пространства меньше 3, например, 2 (плоскость) или 1 (линия), то в этих мирах хаос невозможен и случайностей не существует. Тогда как в пространстве размерности 3 присутствует и хаос, и порядок. Но, если пространство во Вселенной имеет больше трёх размерностей, например, 4, 5N, то в этих Вселенных царит хаос, а периодика невозможна, впрочем, как и усложнение. Даже атомы здесь отсутствуют, это миры элементарных частиц и случайностей.
Идеи голографической и Мультивселенной, в частности: работы Бома, Малдасены, Хоофта предполагают, что наш мир является проекцией голографической двухмерной параллельной Вселенной, где существуют только квазипериодические процессы, а случайностей и хаоса не существует. Они возникают в результате трансляции этой голографической основы в нашу девятимерную Вселенную. Следовательно, первичная реальность носит квазипериодический характер и существует в виде голографической целостности.
Таким образом, порядок первичен, поэтому и реализуются антиэнтропийные процессы, базирующиеся на первичной основе параллельной реальности. И, несмотря на глобальную тенденцию энтропийной направленности, в нашей Вселенной присутствует локальная негэнтропийная реализация. Открытие условий, законов и механизмов этих процессов может реализовать фантастический вариант входа в первичную реальность, позволит научиться управлять её основой, что может изменить мир нашей Вселенной и нас самих.
Поразительно, но, по оценкам космологов, количество параллельных Вселенных может составлять огромное число 10500. Однако, вероятно, только некоторые из них, могут оказывать на нас существенное влияние, а в настоящее время речь идёт о воздействии лишь одной голографической Вселенной.
Жизнь как неслучайное явление. Информационный подход
Энтропийные явления царствуют в нашем мире. Информация в термодинамике определяется как обратная энтропия, т. е. выступает как мера упорядоченности. Если взглянуть на нашу земную форму жизни с точки зрения этого подхода, поражает огромная информационная ёмкость живой системы. Ведь даже самый простой микроорганизм на Земле имеет почти нулевую вероятность возникновения (1:201820). Каким образом в нашей Вселенной могла возникнуть и существовать такая сложнейшая система?
Возможно, решение этого вопроса заключается в единообразной трактовке самого понятия информации. Между тем общей теории информации не существует, это дело ближайшего будущего, на данный момент имеется несколько принципиально разных концепций, трактующих данный феномен. Наибольшее распространение получил вероятностный подход, сформулированный Хартли и Шенноном. С их точки зрения информация выступает как мера уменьшения неопределённости в наступлении статистических событий. Подход Шеннона является более широким по сравнению с Хартли, так как включает разновероятностные события. Он может быть использован для выяснения разницы мер структур, имеющих вероятностные характеристики, и определения меры детерминированности, следовательно, апостериорной (полученной в результате опыта) информации. В качестве эталона выступает полный беспорядок, для которого характерна предельно высокая степень энтропии.
Существуют также трактовки информации как разности мер структур, но не имеющих вероятностную природу, а задаваемых в различных алгебрах [31].
Существуют также трактовки информации как разности мер структур, но не имеющих вероятностную природу, а задаваемых в различных алгебрах [31].
В рамках шенноновского понимания информации Винером была заложена основа кибернетического подхода, наиболее близкая к пониманию функционирования живой материи. Им было сформулировано два важных положения: первое, информация не существует без своего носителя, по отношению к которому она инвариантна, и второе, она представлена в сигнальной форме и имеет кодовый характер. Иными словами, информация есть выражение порядка организованных сигналов, являющихся отображением источника. Отсюда пришла идея генетического кода как основы биологических процессов. Был открыт универсальный носитель генетической информации ДНК, а также РНК, которая содержится в некоторых вирусах. Именно эта концепция лежит в основе понимания сущности живого.
Имеется и другой подход, рассматривающий информацию как меру комплексности (сложности) объектов. В рамках идей конструктивной математики, согласно которой все объекты являются построенными (сконструированными), возникла алгоритмическая концепция, сформулированная отечественным учёным А.Н. Колмогоровым. В ней информация определяется как минимальная длина компьютерной программы, с помощью которой этот объект был построен. Например, если мы возьмём числовой ряд 1.2.3.4.5N, то для построения любого члена ряда нам понадобится всего один оператор, так как следующий член ряда возникает после прибавления к предыдущему единицы. Иначе говоря, есть одна формула, с помощью которой он строится и, следовательно, такой ряд как математический объект обладает малой информационной ёмкостью. А вот если взять набор случайных чисел, которые не имеют компактного алгоритма описания, то тогда, сколько имеется этих чисел, столько и потребуется операторов для их представления, и информационное содержание такого объекта будет громадно, а он сам сверхсложен.
Некоторые учёные рассматривают хаос как сверхпорядок, поскольку он является сверхсложным. Наверное, неслучайно хаотические структуры, являющиеся фракталами, буквально пронизывают ткани живых организмов, вырастая из хаосогенных механизмов. И это требует переоценки даже основных понятий нормы и патологии в таких, казалось бы, классических науках, как биология и медицина.
Особый подход к пониманию информации был сформулирован отечественным учёным К.А. Валиевым, где информация определяется как изменение состояний системы. Он является более универсальным, поскольку количество состояний определяет информационную ёмкость, а их изменения переработку информации. Тогда получают своё логическое объяснения такие объекты, как прионы, не имеющие ДНК и РНК, а также нанобактерии, представляющие собой кристаллическую форму жизни. Возможно, мы просто не там ищем жизнь в космосе. Иные её формы могут находиться у нас на Земле буквально под ногами. В принципе, на возникновение жизни в космосе могло сказаться и влияние параллельной голографической Вселенной. Ведь в этой Вселенной, имеющей двухмерные пространственные параметры, не существует случайностей, есть лишь сложные периодические процессы, а жизнь тоже по-своему периодична.
Глава 2
Мир космоса и Мультивселенной
Существует ли жизнь в звёздах? Какая она тогда
Ещё несколько десятилетий назад человека, задающего такой вопрос, сочли бы сумасшедшим. Конечно, белковая жизнь, какой мы её знаем на нашей планете, невозможна в условиях звёзд, где царят чудовищное давление и температура в десятки миллионов градусов в центральных зонах. Достаточно констатировать, что на поверхности нашего светила температура составляет 5600 °C, и основным состоянием вещества является плазма, представляющая собой ионизированный газ, по сути, находящийся в хаотическом состоянии. Казалось бы, какая «живая» система в этих условиях может вообще возникнуть и существовать? Тем не менее прогресс научного познания открыл новые аспекты этой проблемы.
В настоящее время даже специалисты, работающие в областях исследований происхождения и специфики живых систем, отказались от обсуждения вопроса, чем отличается живое от неживого, и сконцентрировались на изучении механизмов его функционирования. Поскольку оказалось, что надёжных критериев их различий не существует. Традиционные представления, характеризующие живые системы, такие как обмен веществ, рост, размножение, эволюция и другие, оказались несостоятельными. Выяснилось, что и неживые системы обладают такими же свойствами при определённых условиях. Эти условия и механизмы переходов в настоящее время тщательно исследуются синергетикой. В частности, поразительные эффекты были установлены космонавтами при изучении свойств плазмы на Международной космической станции. В условиях невесомости возникли усложнения плазменных структур, плазма свернулась в двойную спираль, напоминающую по своей форме молекулу ДНК.