Вещи не то, чем кажутся. 100 фреймов УНИВЕРСУМА - Константин Владимирович Крамаренко 7 стр.


Так что же такое порядок? В отличие от хаоса это определённость, малая степень энтропии, периодичность, закономерность, наличие устойчивых связей между явлениями. В свете изложенного в самом хаосе есть порядок. Ещё в первой половине XX века английским математиком Рамсеем была доказана теорема, смысл которой стал понятен лишь в настоящее время полный беспорядок невозможен. Чем больше мощность хаоса, тем больше в нём очагов порядка. Достаточно управляющими сигналами воздействовать на эти очаги, и станет возможно осуществить переход в упорядоченные состояния, чем сегодня и занимается новая наука теория управляемого хаоса [13].

В настоящее время идёт поиск законов перехода хаоса в порядок. Если такие законы будут открыты, то нас ждёт научная революция, открывающая фантастические технологические возможности, по сравнению с которыми киборг Т-1000 в фильме «Терминатор-2: Судный день» покажется просто детской игрушкой.

Теория катастроф

В обыденной жизни часто происходят ситуации, которые сопровождаются резкими скачкообразными трансформациями, несмотря на привычные плавные движения. Классические методы математического анализа, основа которых была создана ещё Ньютоном и Лейбницем, ориентированные на исследования гладких плавных изменений, не справляются с описанием и прогнозированием подобных процессов.

Теоретические принципы, сформулированные классической наукой, базируются на парадигме того, что протекающие в нашей действительности процессы рассматриваются в виде постоянно меняющихся параметров. Однако большинство совершающихся трансформаций происходят скачкообразно, резкими качественными изменениями объектов и процессов: внезапное разрушение моста, закипание жидкости, возникновение тюремных бунтов, наступление биржевого кризиса или крушение самолётов. И такие кардинальные метаморфозы возникают обычно на фоне предшествующих весьма плавных изменений системы, когда их появлению вроде бы ничего не предвещает. Собственно катастрофой называется скачкообразные внезапные трансформации, возникающие в системе в виде её ответа на предшествующие плавные изменения внешних условий. При этом такие трансформации крайне плохо поддаются предсказаниям [14]. Однако в современной области математических знаний, которая носит название теории катастроф, разработаны методы, позволяющие в определённых условиях производить оценки подобных явлений.


Фазовое пространство Ляпунова. Изменение цвета показывает переход системы от упорядоченного состояния к хаотическому [15]


Французский математик Рене Том предложил называть теорией катастроф топологическую теорию динамических систем, используемую для оценки метаморфоз явлений природы, а также совокупность приложений теории особенностей, указав на наличие в подобных процессах структурной устойчивости. При установленных ограничениях переменных и параметров всё многообразие протекающих процессов можно свести всего к семи (!) классическим топологическим конструктам, к которым и будет стремиться поведение системы [16]. Анализируя топологические портреты, являющиеся особыми зонами в фазовом пространстве состояний, возможно установить границы бифуркационных множеств, при попадании в которые система станет совершать скачкообразные трансформации.


Двухмерные образы катастроф. Эллиптическая и параболическая омбилики


При стратификации успеваемости существуют довольно устойчивые группы, соответствующие как максимуму (отличники и близкие к ним студенты), так и слой студентов, соответствующий минимуму имеющих неудовлетворительную успеваемость и занимающихся по нижней грани оценки удовлетворительно. Они находятся на разных листках топологической поверхности достижений. С точки зрения теории катастроф, в педагогическом процессе основные усилия по контролю знаний и обучению должны быть сконцентрированы на тех студентах, которые находятся в бифуркационной зоне. Так как студенты, имеющие посредственную успеваемость, могут скачком перейти в область хороших и отличных достижений, а хорошо успевающие студенты очень быстро выйти из опасной зоны бифуркации и обрести устойчивый ранг высоких оценок. Располагая данными IQ студентов, параметрами, обеспечивающими качество учебного процесса и используя методы теории катастроф, можно будет прогнозировать, и в определённых пределах более эффективно управлять качеством образования.

Практическое применение теории катастроф заключается в том, что огромное количество явлений, встречающихся в мире, она позволяет свести к очень ограниченному набору стандартных форм, и уже с их помощью провести количественные и качественные оценки динамично изменяющихся феноменов. Так как методы теории катастроф универсальны, они могут использоваться в сфере политики, экономики, управления, медицины, образования и т. п. Таким образом, научное познание получает новые эффективные инструменты для исследования феноменов реальности, до настоящего времени недоступных традиционным методикам и технологиям.

Фракталы в природе и организме человека

Статус математики в отношении природных процессов долгое время был не определён. В действительности нет точек, прямых линий, идеальных кругов и других фигур геометрии Евклида. С точки зрения здравого смысла, математика это игра разума и задача познания с целью лишь описания явлений и их классификации. Поэтому древнегреческое знание не развило физику и естествознание. Создать физику и другие естественные науки значит применить к действительности однородные точные математические и геометрические законы.

Только в Новое время Галилей, Ньютон и их последователи смогли обнаружить эти формы в механическом движении и простых механических системах. Тем не менее многие природные системы обладают огромной степенью сложности, несравнимой с использованием простых образов классической геометрии, поэтому их моделирование на такой основе оказывается невозможным. Действительно, как построить модели кроны деревьев, горного хребта, изрезанной береговой линии в объектах евклидовой геометрии? Как смоделировать сложные биологические объекты, обладающие многообразной конфигурацией, такие как нейронная сеть, система кровообращения, ацинусное строение легких, структура почек?

Столь сложной оказывается и динамическое поведение природных процессов, например, турбулентность, ритмы сердца и головного мозга. Для моделирования подобных явлений в конце XX века был создан новый тип геометрии, получившей название фрактальной. Термин фрактал был введён американским математиком Бенуа Мандельбротом в 1983 году, когда вышла его книга «Фрактальная геометрия природы». Фракталы это, прежде всего, язык геометрии, но они выражаются в алгоритмах, наборах своего рода математических процедур, которые трансформируются в геометрические формы с помощью компьютеров. Основной принцип строения фрактала «всё во всём» или, как отмечают математики, он обладает инвариантной структурой относительно масштабирования. Это значит, что фрактал проявляет одинаковое строение на разных уровнях масштаба и, кроме этого, обладает дробной размерностью, в отличие от линий и площадей, имеющих целостное значение.


Множество Мандельброта. Построено в программе WinSet 3.0


Множество Жюлиа. Построено в программе WinSet 3.0


Существует два типа основных алгоритмов, каждый из которых имеет огромное многообразие комбинаций: линейные и нелинейные. Линейный алгоритм можно представить в виде копировальной машины, способной сжимать, т. е. уменьшать изображение, или увеличивать его. Таким образом, благодаря повторяющимся операциям, формируется образ объекта. Примером работы подобных алгоритмов служит изображение листа папоротника, треугольник Вацлава Серпинского, впервые описавшего этот объект ещё в 1916 году. Треугольник Серпинского обладает самоподобием, выражающемся в том, что каждая его часть, сколь малой она не была бы, воспроизводит структуру всего большого треугольника [17].

Другой тип фрактальных алгоритмов является нелинейным. Для этого используются итерационные циклы, имеющие степенные функции, иногда реализуемые в комплексных числах. Собственно такое изображение было получено Мандельбротом и получило название в его честь.

Несмотря на то, что эти функции достаточно просты, при проведении компьютером огромного количества операций с их помощью удаётся строить модели, в принципе, любых природных и биологических объектов. Поэтому фрактальная геометрия является языком объектов, и сомнения в её применимости к многообразию природы отпадают. Причём это не только просто воспроизведение природных структур, фрактальная геометрия даёт количественные характеристики тех или иных сложных конструктов, выраженные в понятиях фрактальной размерности, например, Хаусдорфа Безиковича, Минковского и других [18].

Назад Дальше