1. «Зеленый водород» является самым экологичным, т. к. получают его с помощью электролиза, если электричество поступает от ВИЭ, таких как ветер, солнечная или гидроэнергия, выбросы СО2 отсутствуют.
2.«Желтый и оранжевый водород» как и зеленый получают путем электролиза, однако, источником энергии являются атомные электростанции, энергия передается по сетям, выбросы СО2 отсутствуют, но метод не является абсолютно экологичным
3.«Бирюзовый водород» получают разложением метана на водород и твердый углерод путем пиролиза. Дает относительно низкий уровень выброса углерода, который может быть либо захоронен, либо использован в промышленности, и он не попадает в атмосферу.
4.«Голубой водород» производится путем паровой конверсии метана и газификации угля, но при условии улавливания и хранения углерода, что дает примерно двукратное сокращение выбросов углерода.
5.«Серый водород» производится путем паровой конверсии метана, пиролиза природного газа/угля и газификации угля.
Рис.2.1. Классификация водорода в Европейском Союзе
С помощью газификации бурого угля образуется синтез-газ смесь углекислого газа (CO2), монооксида углерода (CO), водорода, метана и этилена. Очень неэкологичный процесс по сравнению с другими методами.
Производство серого водорода значительно отличается от производства зелёного водорода. В наши дни водород в основном производится за счет паровой конверсии метана (SMR, steam methane reforming) из природного газа или после газификации угля. Этот отработанный в промышленных масштабах, дешевый процесс еще долго не будет иметь никаких конкурентов по себестоимости получаемого водорода (12 долл./кг в зависимости от цены газа и угля). Но в эпоху «энергетического перехода» не менее важной характеристикой процессов становится их углеродный след. Паровая конверсия метана приводит к эмиссии углекислого газа 10 кг СО2/кг H2. Поэтому такой водород называют «серым» в зависимости от сырья (газ или уголь) он либо сопоставим с обычным природным газом, либо в 2,5 раза хуже него по этому показателю. Очевидно, для декарбонизации экономики лучше использовать природный газ, чем «серый» водород поэтому он не может быть частью водородной экономики будущего. Одна из альтернатив производство «серого» водорода только в комбинации с технологиями по улавливанию и хранению углекислого газа (CCS carbon capture and storage). Полученный таким образом водород называют «голубым» В отличие от SMR, технологии CCS еще далеки от полномасштабной коммерциализации. По данным Global CCS Institute, в 2018 году в мире насчитывалось лишь 18 крупных проектов с технологией улавливания СО2, еще 5 было в стадии строительства и 20 в различных стадиях разработки.
В апреле 2019 года получил положительное заключение экологической экспертизы демонстрационный проект производства «голубого» водорода из бурого угля бассейна Латроб-Валли в Австралии с последующим экспортом водорода в Японию Hydrogen Energy Supply Chain, развиваемый под управлением японской фирмы Kawasaki.
Голубой водород имеет хорошие перспективы в странах экспортерах ископаемого топлива, где цена его невелика хотя коммерциализация технологии CCS потребует еще значительных усилий.
Вторая альтернатива «серому» водороду «зеленый» водород, получаемый электролизом с помощью энергии с минимальным углеродным следом в первую очередь, от ВИЭ. Не всякий водород, получаемый электролизом, можно называть «зеленым» всё зависит от углеродного следа используемой для этого электроэнергии. Так, большинство известных установок в Германии пока используют электроэнергию из энергосистемы, а не исключительно от ВИЭ, поэтому из-за в целом довольно высокого ее углеродного следа получаемый водород является «серым». Подключение электролизера изолированно к ВИЭ может решить эту проблему но в этом случае загрузка электролизера падает примерно вдвое: она не может быть выше коэффициента использования установленной мощности ВИЭ. Только «зеленый» водород, полученный от ВИЭ, является краеугольным камнем для водородной экономики в целом, вокруг него концентрируются исследования в большинстве водородных программ.
В то же время, энергокомпании с существенным портфелем АЭС тоже претендуют на свое место на глобальном рынке водорода. В апреле 2019 года французская EDF, владеющая 58 атомными энергоблоками, заявила о запуске дочернего бизнеса Hynamics, который сосредоточится на поставках и обслуживании электролизеров, а также заправке водородного транспорта. Полученный таким образом водород на базе электроэнергии АЭС также будет иметь минимальный углеродный след. Стоит отметить, что интерес к «зеленому» и «голубому» водороду явно растет. По данным МЭА, в течение последних семи лет в среднем в мире вводили в эксплуатацию около 10 МВт электролизеров ежегодно. Инвестиции в электролизеры растут совокупная мощность установок может почти утроиться в ближайшие 23 года. Для полноценной коммерциализации нужно перейти через границу в 90 МВт/год.
Еще один способ уменьшить углеродный след частично использовать в качестве сырья биомассу/биогаз.
Основные компоненты водородной энергетики представлены на рис.2.2.
Рис. 2.2. Основные компоненты водородной энергетики
Для получения водорода в данный момент существует множество различных путей из ряда известных источников. Среди источников получения водорода можно выделить природное топливо: метан, уголь, древесина, нефтепродукты, техногенные горючие газы. При взаимодействии топлива с парами воды или воздухом образуется синтез-газ смесь СО и Н2. Из нее затем выделяется водород.
Другой источник отходы сельскохозяйственного производства, из которых получают биогаз, а затем синтез-газ. Промышленно-бытовые отходы тоже используются для производства синтез-газа, что способствует одновременно и решению экологических проблем, поскольку отходов много и их нужно утилизировать. В конечном счете образуются углекислый газ, водород и окись углерода.
Дальше идет каталитическая очистка, электрохимическая конверсия и т.д. Очень важным элементом при преобразовании газа, содержащего водород, является очистка газа. В конечном счете получается чистый водород. Водород можно получать также электролизом воды, то есть разложением ее под воздействием электрического тока, получаемого от различных источников энергии. В дальнейшем полученный водород поступает в системы хранения или транспортируется к потребителям.
Существует четыре основных источника промышленного производства водорода: природный газ, нефть, уголь и электролиз.
В последние годы особое внимание обращают еще на один важный природный источник метана Мировой океан. Когда метан, поднимаясь из недр земли, встречается с водой, просочившейся сквозь трещины земной коры, он сразу остывает. При этом образуется вещество гидрат метана. Это горючее вещество, его запасы превышают запасы нефти, угля и природного газа, вместе взятые.
В условиях истощения запасов привычных видов топлива оно может сыграть весьма положительную роль в энергетике, но его использование может привести к изменению климата.
Разнообразие источников получения водорода является одним из главных преимуществ водородной энергетики, так как повышает энергетическую безопасность и снижает зависимость от отдельных видов сырья.
Методы получения водорода подразделяются на физические, электрохимические и химические.
К физическим методам относятся те процессы, в которых исходное сырье (газовая смесь) уже содержит свободный водород и требуется тем или иным физическим путем освободить его от остальных компонентов.
В электрохимических методах выделение водорода из его химических соединений осуществляется разложением последних под действием электрического тока.
Химические методы являются наиболее распространенными способами получения водорода в целом и, в особенности для нефтеперерабатывающей и нефтехимической промышленности.
В настоящее время существует некоторые способы промышленного производства водорода:
паровая конверсия метана и природного газа;
газификация угля;
электролиз воды;
пиролиз;
частичное окисление;
биотехнологии.
Также в редких случаях используется реакция алюминия и щелочного раствора.
Паровая конверсия метана и электролиз это базовые технологии, вокруг которых, по мнению большинства исследователей, будет развиваться сектор производства водорода. Среди других способов можно выделить риформинг плазмы; риформинг на основе ионных мембран; конверсию метана с усилением сорбентом; микроканальные реакторы; разложение (пиролиз) метана с выделением углерода в твердом виде; высокотемпературные газоохлаждаемые ядерные реакторы и т.д. Эти технологии пока находятся на еще более ранних стадиях коммерциализации.