Рис.2.12. Схема газогенераторов Винклера
К преимуществу технологий кипящего слоя можно отнести возможность введения дополнительных реагентов, помимо угля и инертного материала. В частности, введение в кипящий слой соединений кальция (обычно известняк или доломит) позволяет связывать серу, находящуюся в угле. Преимуществом этих газогенераторов является возможность использования более широких фракций угля, включая мелочь, которая выносится из слоя и газифицируется в надслойном пространстве. Основной же проблемой данных газогенераторов является то, что унесенная зола содержит значительное количество непрореагировавшего углерода. Температура кипящего слоя составляет примерно 10001100°С, что чуть ниже температуры размягчения золы. Для максимализации конверсии углерода рабочая температура слоя находится близко к этой лимитирующей температуре. Тепло отводится через верхнюю часть газификатора. Газогенераторы Винклера ранее широко использовались, но недолго, в настоящее время практически нигде не используются из-за низкой степени конверсии углерода.
В 197080гг. был разработан высокотемпературный газогенератор Винклера. Главным отличием от оригинальной конструкции явилась возможность работы под давлением (примерно 1 МПа). Увеличение давления позволило повысить степень конверсии углерода. Работа под давлением повлекла изменения в системе подачи угля, рис. 2.13. Уголь при атмосферном давлении загружается в бункер. Далее в одной из двух шлюзовых камер сбрасывается давление и в нее поступает уголь из бункера. Затем входной клапан закрывается и в камеру нагнетается давление, после чего открывается нижний клапан и уголь проваливается на линию, где пневматически транспортируется на фильтр.
Рис.2.13. Схема высокотемпературного генератора Винклера
Газ после фильтра повторно идет в компрессор, а уголь поступает в загрузочный бак. Питание газогенератора происходит за счет дозирующего клапана, расположенного на дне загрузочного бака. Использование двух шлюзовых камер позволяет данным газогенераторам работать в непрерывном режиме.
Процесс имеет существенные достоинства:
возможность непрерывной подачи топлива в газогенератор;
интенсивную теплопередачу и хорошее перемешивание, обеспечивающее изотермический режим в реакционной зоне;
простоту регулирования температуры и высокую производительность аппарата.
Наиболее предпочтительными топливами для газификации по этому методу являются бурые и реакционноспособные каменные угли, буроугольный кокс или полукокс. Усовершенствование процесса Винклера возможно путем повышения температуры и давления процесса.
У процесса есть следующие недостатки:
большой унос с газом непрореагировавшего топлива, которое трудно возвратить на газификацию,
пониженные температуры в зоне реакции, лимитируемые выводом золы в сухом виде;
невозможность переработки спекающихся каменных углей из-за слипания их частиц нарушается режим работы газогенератора;
сложная система загрузки топлива.
Для сравнения процессов, рассмотренных выше в таблице 2.5, приведены основные их показатели.
Таблица 2.5. Основные показатели процессов газификации твердых топлив
Наряду с рассмотренными выше методами газификации угля, которые можно сейчас уже назвать классическими, начиная с середины прошлого столетия в разных странах интенсивно разрабатываются более прогрессивные методы. В ряде случаев они представляют собой усовершенствованные варианты рассмотренных процессов.
2.2.4. Железо-паровой процесс
Одним из процессов, основанном на использовании многоступенчатой газификации является железо-паровой процесс производства водорода. Процесс основан на том, что активные металлы вытесняют водород из воды, например, натрий и кальций разлагают воду при обычных условиях, магний при нагревании, цинк при накаливании с водяным паром, железо при нагревании около 700°С. На первой ступени газификации используемый кокс газифицируется с помощью паровоздушного дутья, в результате чего получается газ, содержащий СО, Н2 и N2. Наличие азота не является недостатком, так как промежуточные процессы позволяют от него избавиться. Полученный газ используется для восстановления окисла железа Fe3O4 до FeO в соответствии с реакциями:
Fe3O4 + СО = 3FeO + СО2;
Fe3O4 + Н2 = 3FeO + Н2О.
Образовавшиеся в результате этих реакций СО2, Н2О и N2 после утилизации теплоты выбрасываются в атмосферу. Если исходное дутье имеет повышенное давление, то наиболее целесообразно использовать эти газы в газотурбинной установке. При этом КПД процесса получения водорода достигает 63%, из которых 18% приходится на вырабатываемую электроэнергию.
На следующей стадии полученная окись железа FeO направляется в окислитель, где при более низкой температуре одна из двух прежних реакций происходит в обратном направлении:
3FeO + Н2О = Fe3O4 + Н2
При обычных для этого процесса температурах равновесие реакции таково, что ее продукты содержат около 37% водорода (остальное в основном водяной пар, который удаляется конденсацией).
Железо-паровой процесс обладает рядом существенных недостатков сравнительно с конверсионным: он требует большего расхода водяного газа и дает водород со значительным содержанием примесей.
2.2.5. Процесс СО2-акцептор
Все рассмотренные выше методы газификации основываются на автотермическом проведении реакции. Поэтому газифицирующая газовая смесь содержит водяной пар и кислород (или воздух), соотношение которых определяет конечную температуру процесса газификации. При этом для получения газа с более высокой теплотой сгорания и для уменьшения затрат на очистку от азота предпочитают использовать не паровоздушное, а парокислородное дутье. Это существенно удорожает процесс за счет включения в него установки для разделения воздуха.
Однако, есть и другая возможность получить недостающую теплоту для эндотермической реакции угля с водяным паром. Среди схем с аллотермическим подводом теплоты, реализующих эту возможность, представляют интерес схемы, в которых недостающая теплота образуется за счет побочной химической реакции с участием дополнительно вводимого в зону реакции реагента. В качестве примера такого способа следует упомянуть метод СО2-акцептор, разработанный в США. Здесь теплота вводится в зону газификации за счет реакции СаО с двуокисью углерода с образованием доломита:
СаО + СО2 = СаСО3.
При этой реакции выделяется около 176,8 кДж/моль. Этого количества теплоты достаточно, чтобы осуществить газификацию угля только водяным паром. Схема газификации по методу СО2-акцептор представлена на рис. 2.14. Процесс газификации происходит в кипящем слое при давлении 12 МПа. Отсортированный и высушенный уголь подается через шлюз вначале в камеру термического разложения, где при температуре 800850°C происходит пиролиз исходного угля продуктами газификации. Поэтому получающийся газ содержит продукты пиролиза, хотя при указанной температуре в среде водяного пара они частично разлагаются. Часть образовавшегося полукокса поступает в собственно кипящий слой газификатора. В верхнюю часть слоя поступает регенерированный доломит с температурой около 1025°C.
В нижнюю часть слоя подается паровое дутье. Образующаяся в результате реакции с водяным паром двуокись углерода вступает в реакцию с СаО, образуя доломит и поставляя теплоту для эндотермической реакции угля с водяным паром. Более крупные и тяжелые частицы СаСО3 постепенно опускаются в нижнюю часть слоя. Непрореагировавший уголь и зола уносятся газами вверх, а СаСО3 выводится из газификатора и направляется на регенерацию.
Рис.2.14. Схема газификации по методу СО2-акцептор:
1-зона подготовки угля, 2-загрузочный шлюз, 3-зона термического разложения, 4-газификатор с кипящим слоем, 5-система котел-утилизатор + водяной скрубер, 6-аппарат для очистки газа, 7-реактор метанирования, 8-регенератор с кипящим слоем
Регенерация представляет собой эндотермический процесс, происходящий при температуре около 1025°C:
СаСО3 = СаО + СО2.
В регенераторе также организуется кипящий слой. Здесь теплоту для реакции регенерации поставляет сжигание в воздухе части полукокса, выводимого из камеры термического разложения. Регенерированный доломит возвращается в газификатор, а дымовые газы из регенератора вместе с золой направляются на утилизацию теплоты, в частности на производство водяного пара в котле-утилизаторе.
Недостатком процесса СО2-акцептор является сравнительно низкая температура газификации, лимитируемая термической стойкостью доломита (~850°C). Из-за этого в газе, как уже отмечалось, остаются продукты пиролиза и требуются специальная очистка как газов, так и воды. Газ, получаемый по этому методу, содержит (по объему): 16% СО, 11% СО2, 56% Н2, 15% СН4 (прочие компоненты- около 2 %). Таким образом, содержание водорода достаточно велико, но велико и содержание метана, связанное с высоким давлением.