Для того чтобы запустить процесс восстановления здоровья, прежде всего необходимо:
на первом этапе: восстановить правильный поток информации от рецепторов, ее корректную переработку полученных данных и адекватную согласованную реакцию группы мышц на полученный приказ.
на втором этапе: весь комплекс описанного двигательного акта необходимо включить в сложное движение согласно законам формирования двигательного акта. Другими словами, нужно провести двигательное переобучение.
А чтобы детально разобраться в поломках своего здоровья, важно понять где расположены наиболее слабые звенья мышечно-скелетной системы.
1.2. Скелетная мышца
Скелетная мышца состоит из отдельных мышечных волокон, которые переходят в сухожилия. С их помощью мышца прикрепляется к разным элементам мышечно-скелетной системы (надкостница, связки), которые составляют систему стабилизации мышцы.
Мышечные волокна разделены между собой соединительнотканными перегородками (фасциями), которые формируют каркас мышцы и плавно переходят с одной на другую, составляя единый комплекс сокращения.
Биомеханика
Под воздействием нервного импульса:
мышечные волокна скользят относительно друг друга, выполняя сокращение или растяжение;
сухожилия мышцы фиксируют ее к костным структурам;
фасции, эластично растягиваясь, позволяют скользить мышечным волокнам и проходящим между ними сосудам и нервам относительно друг друга.
Скелетная мышца снабжена рецепторами. Они принимают сигнал и выполняют двигательную задачу. Работа мышечно-скелетной системы подчиняется определенным законам.
Закон первый. «Все или ничего».
Мышца, которая получила нервный импульс на сокращение, включает в движение одномоментно все свои волокна. Поэтому без участия ограничивающих структур движение получается резкое и быстрое, в избыточном объеме, травмирующее места ее прикрепления.
Закон второй. Закон самокоррекции мышцы.
Позволяет избежать травмы. Импульс к мышце поступает двумя потоками. Первый идет к мышечному брюшку (для выполнения сокращения). Одно место прикрепления стабилизируется, а другое за счет движения меняет пространственное положение. Так возникает движение. Другой поток идет к сухожилию мышцы (рис. 8). Он включается для торможения сигнала, направленного на сокращение брюшка мышцы и ограничение избыточного сокращения (рис. 9). Механизм работы таков: избыточное сокращение активизирует рецепторы сухожилия и возбуждение, направленное на сокращение мышцы, тормозится.
Закон третий.
Закон парной активации мышц-антагонистов.
Возбуждающий импульс к мышце поступает:
к мышечному брюшку (для выполнения сокращения);
к сухожилию антагониста мышцы (для торможения возбуждения мышцы антагониста).
В результате сокращаются обе мышцы, но одна при этом укорачивается, а другая растягивается, создавая плавность выполнения движения.
Закон четвертый. Закон формирования стабилизации местприкрепления фиксаторов.
Для обеспечения неподвижности мест прикрепления мышцы-агониста активируются как сами мышцы-фиксаторы, так и их антагонисты.
Возбуждающий импульс поступает к мышечному брюшку обеих мышц: как к сокращаемой мышце-фиксатору, так и к ее антагонисту. В результате сокращаются обе, но движения не происходит.
Нереализованная энергия способствует повышению тонуса мышц, что принципиально важно для поддержания стабилизации места прикрепления агониста.
Нейрофизиологические характеристики мышцы
Различают две основные характеристики:
А) длина мышцы (степень сокращения или растяжения), которая явилась результатом сокращения нескольких мышц;
Б) тонус степень напряжения мышцы (определяет ее чувствительность к восприятию сигнала нервной системы и обеспечивает скорость возбуждения).
Если после принятия сигнала мышца начинает реагировать сокращением, уменьшая длину (сокращение с укорочением) или увеличивая ее (сокращение с растяжением), тонус обычно остается неизменным. Такое сокращение называют изотоническим. Оно используется при выполнении движений.
Если же при принятии сигнала мышца не меняет длины, то тонус в норме начинает увеличиваться, делая ее более чувствительной к реакции на возбуждение. Такое сокращение называют изометрическим. Оно необходимо при поддержании вертикального положения тела.
Если после принятия сигнала мышца начинает реагировать сокращением, уменьшая длину (сокращение с укорочением) или увеличивая ее (сокращение с растяжением), тонус обычно остается неизменным. Такое сокращение называют изотоническим. Оно используется при выполнении движений.
Если же при принятии сигнала мышца не меняет длины, то тонус в норме начинает увеличиваться, делая ее более чувствительной к реакции на возбуждение. Такое сокращение называют изометрическим. Оно необходимо при поддержании вертикального положения тела.
Рис. 8. Строение сухожильного аппарата Гольджи.
Таким образом, мышца выполняет два вида работ.
Неизменная длина. Повышение или понижение тонуса для поддержания статики;
Неизменный тонус. Изменение длины: укорочение и растяжение для выполнения движения.
Рис. 9. Неврологическая оценка активности миотатического рефлекса в покое.
Рис. 10. Кинезиологическая оценка активности миотатического рефлекса при нагрузке.
Закон пятый.
Миотатический рефлекс (МР) как реакция мышцына ее растяжение.
Кратковременное растяжение мышечного волокна приводит к резкому сокращению всех входящих в мышцу волокон (по закону «все или ничего»). Его активность зависит от степени трофического обеспечения мышцы (иннервации, кровоснабжения, лимфооттока) и от состояния тонуса исходной возбудимости в покое (влияния различных органов и систем, рефлекторно связанных с мышцей).
В неврологии (рис. 9) МР оценивается в расслабленном состоянии мышцы (рефлекс покоя). Его цель оценить состояние иннервации (скорости проводимости импульса по нерву, который обеспечивает питание соответствующей мышцы) и определить уровень его поражения: досегментарный, сегментарный, надсегментарный. В прикладной кинезиологии (рис. 10) миотатический рефлекс оценивается в состоянии изометрического напряжения мышцы (рефлекс напряжения).
Цель МР в кинезиологии оценить способность мышцы:
а) увеличить степень тонического напряжения (отсутствие подавляющего влияния различных органов и систем, рефлекторно связанных с мышцей);
б) сохранить активность миотатического рефлекса в процессе нагрузки, что является критерием резервных возможностей ее адаптации.
Уровни, обеспечивающие активностьмиотатического рефлексаПериферический уровень
Определяет функциональные возможности элементов, входящих в состав мышцы, чтобы реализовать поставленную задачу.
Факторы, влияющие на сократимость: формирование триггерных точек (мелких участков спазма мышцы) в ее брюшке или в месте перехода мышцы в сухожилие.
Факторы, влияющие на растяжимость мышцы: фасциальная эластичность, возбудимость рецепторов сухожилий.
Факторы, влияющие на силу сокращения: скольжение периферических нервов между мышечными волокнами.
Сегментарный уровень
Обеспечение подвижности периферических нервов, которые проходят:
в туннеле между слоями мышц, фасций, сухожилий;
на уровне соответствующих сегментов спинного мозга;
на уровне вышерасположенных сегментов спинного мозга.
Кровоснабжение. Его состояние отражается на активности нейрососудистого рефлекса это рефлекс сосудистой системы активизирующейся при раздражении точек, расположенных на коже, которые отражают нарушение кровотока в мышцах и органах.
Рис. 11. Места расположения точек, отражающих активность висцеромоторных рефлексов.
Лимфоток. Его состояние отражается на активности нейролимфатического рефлекса это рефлекс лимфатической системы активизирующейся при раздражении точек, расположенных на коже, которые отражают нарушение лимфотока в мышцах и органах.
Висцеромоторный рефлекс рефлекторное взаимовлияние внутреннего органа и конкретной скелетной мышцы. При патологическом состоянии внутреннего органа снижаются адаптационные возможности мышцы, рефлекторно с ним связанной, и появляется болезненность в определенных точках на теле (рис. 11).
Надсегментарный уровень влияние эмоционального стресса, интоксикации на адаптационные возможности мышц, рефлекторно с ними связанных.