Рис. 1.1. Молекула ДНК, изображенная в виде винтовой лестницы с остовом и без него. Справа: четыре возможные ступени; A и T всегда идут вместе, так же как C и G.
Проделывая путь по большему набору ступеней по такому количеству, которое вы захотите рассмотреть, вы заметите, что конструкция каждой ступени непредсказуема, но не совсем произвольна. Это потому, что молекула всегда подчиняется простому правилу: каждая их двух коротких половин ступеньки может соединяться с одной определенной длинной. Если мы обозначим (не совсем произвольно) короткие половины ступенек C и T, а длинные половины A и G, то A всегда соединяется с T, а G с C.
Из этого правила следует, что если вы видите только половины ступенек, крепящиеся к одному из спиральных остовов, то вы можете абсолютно точно предсказать, какие половины ступенек соединяются с противоположным спиральным остовом. Например, если последовательность половин ступенек с одной стороны представляет собой C, затем A, T и, наконец, G, то с другой стороны им будут соответствовать только половины ступенек G, T, A и C, именно в таком порядке. Половины ступенек представляют собой плоские геометрические молекулы, называемые основаниями; незыблемое правило, что C соединяется с G, а A с T, таким образом, называется «спариванием оснований». Открытие данного феномена было признано заслуживающим Нобелевской премии, что представляется обоснованным, поскольку этот принцип лежит в основе генетических механизмов, которые делает каждого из нас тем, кто мы есть.
Пока вы усваиваете эту информацию, вы можете взглянуть поближе на ген BRCA1. Поднимитесь на самый верх и встаньте на верхнюю ступеньку. Если вы боитесь высоты, не смотрите вниз: до низа более 67 километров. Теперь спускайтесь вниз по лестнице равномерно на одну ступеньку за секунду. Спуск нельзя назвать комфортным, поскольку расстояние между ступенями свыше 30 сантиметров, и чтобы дойти до низа, потребуется около 35 часов. Если начать спуск в 9 утра, то через 45 секунд после 10:28 вы будете на 5325-й ступеньке сверху. Половина ступеньки, крепящаяся к спиральному остову слева от вас, будет A, потому что такова версия BRCA1 у тех, кому повезло. В случае молодой женщины, напряженно ожидающей, когда ей дадут заключение в клинике генетической консультации, вместо этого A было G. Это единственное отличие между теми, кому повезло и кому не повезло; каждая из остальных 125 950 ступенек абсолютно идентичны у тех и других.
БлокбастерДвойная спираль отражает «строение дезоксирибозной нуклеиновой кислоты», как Дж. Д. Уотсон и Ф. Х. К. Крик из Кавендишской лаборатории в Кембридже предположили в своей краткой работе[7], опубликованной в журнале Nature 25 апреля 1953 года. Их заявление, что такая структура обладает «новыми свойствами, которые представляют значительный биологический интерес», полностью подтвердилось. Двойная спираль и спаривание оснований произвели революцию в нашем понимании механизмов жизни и наследственности. Их открытие стало воплощением сложных задач и славных триумфов науки и считается одним из ключевых моментов в биологии.
Этот момент запечатлен на черно-белой постановочной фотографии 1950-х годов, где два исследователя показаны вместе со своим открытием. Фрэнсис Крик, еще моложавый, но уже лысеющий, стоит справа, указывая на модель двойной спирали логарифмической линейкой, раздвинутой, как будто он выполняет вычисления. Напротив него сидит Джим Уотсон, неуклюжий и поразительно молодой, он глядит на результат их работы снизу вверх, раскрыв рот, как будто фотограф велел ему смотреть на свое создание с благоговейным ужасом. А металлическое причудливое сооружение, напоминающее паука и стоящее на лабораторной скамье между ними, это то, что обеспечило им Нобелевскую премию и почетные места среди величайших ученых всех времен.
События, приведшие к этой фотографии и статье в журнале Nature, начались с того, что Уотсон выявил связь, которую не заметили все остальные. Он разглядел, как два типа оснований одно короткое, одно длинное могут проходить через промежуток между двумя спиральными остовами и соединяться вместе, образуя одну из горизонтальных ступенек. Многие смотрели бы на такое гениальное решение как на величайшее открытие в истории ДНК. Но это также отличный пример того, как удача сопутствует подготовленному уму, и в данном случае практически вся подготовка рано развившегося блестящего ума Уотсона была проделана другими людьми. Не только тем, кто показал ему фотографию 51 с ее красноречивым спиральным рисунком, или тем, кто исправил его вычисления, чтобы соединить основания друг с другом, но всеми теми, кто разработал основы химии ДНК или отстаивал невероятное утверждение, что она может играть какую-то роль в наследственности.
Этот момент запечатлен на черно-белой постановочной фотографии 1950-х годов, где два исследователя показаны вместе со своим открытием. Фрэнсис Крик, еще моложавый, но уже лысеющий, стоит справа, указывая на модель двойной спирали логарифмической линейкой, раздвинутой, как будто он выполняет вычисления. Напротив него сидит Джим Уотсон, неуклюжий и поразительно молодой, он глядит на результат их работы снизу вверх, раскрыв рот, как будто фотограф велел ему смотреть на свое создание с благоговейным ужасом. А металлическое причудливое сооружение, напоминающее паука и стоящее на лабораторной скамье между ними, это то, что обеспечило им Нобелевскую премию и почетные места среди величайших ученых всех времен.
События, приведшие к этой фотографии и статье в журнале Nature, начались с того, что Уотсон выявил связь, которую не заметили все остальные. Он разглядел, как два типа оснований одно короткое, одно длинное могут проходить через промежуток между двумя спиральными остовами и соединяться вместе, образуя одну из горизонтальных ступенек. Многие смотрели бы на такое гениальное решение как на величайшее открытие в истории ДНК. Но это также отличный пример того, как удача сопутствует подготовленному уму, и в данном случае практически вся подготовка рано развившегося блестящего ума Уотсона была проделана другими людьми. Не только тем, кто показал ему фотографию 51 с ее красноречивым спиральным рисунком, или тем, кто исправил его вычисления, чтобы соединить основания друг с другом, но всеми теми, кто разработал основы химии ДНК или отстаивал невероятное утверждение, что она может играть какую-то роль в наследственности.
Сравните это с открытием, которое как будто с неба свалилось в ум, который был совершенно не готов к этому, поскольку все только начиналось и, как после Большого взрыва, до этого момента ничего не существовало.
История ДНК начинается с блестящего молодого человека, который был близок по возрасту к Джиму Уотсону и также работал в университетском городе, средневековые здания которого смотрели на живописную реку. На этом какое-либо сходство заканчивается. Экспериментальная база этого молодого человека довольно мрачна, в основном потому, что ему так нравилось; в наш более щепетильный век его лаборатория была бы закрыта Европейским агентством по безопасности труда и охране здоровья на рабочем месте вследствие многочисленных нарушений директивы 89/684/ЕЭС.
А его исходный материал, с которого началась вся сага о ДНК, еще менее привлекателен: сильно испачканные зловонные медицинские отходы, которые в наше время сразу отправились бы на сжигание.
Глава 2
Вначале[8]
Чрезвычайно холодное утро декабря 1868 года. Мы в Тюбингене, в самом сердце Германии, смотрим на черные воды реки Неккар. Наша наблюдательная позиция находится на втором этаже фахверкового здания Alte Burse на краю старого города. На протяжении трех с половиной столетий в этом помещении располагалось студенческое общежитие; теперь здесь хирургическая палата Университетской клиники. За окном суровая зима, голые ветви платанов покрыты шапками снега, а температура колеблется у отметки нуля. Внутри пациенты готовятся к приходу хирурга и снимают повязки со своей намокшей плоти.
Хирург мастер своего дела. Если повезет, он может вырезать вам камень размером с игрушечный шарик из мочевого пузыря меньше чем за три минуты, и в два раза быстрее отрежет вам ногу. Скорость это не только профессиональный коммерческий довод. Благодаря недавнему изобретению эфира больше не приходится жалеть, что ты не проспал всю операцию, но переливание крови все еще остается чем-то из области фантастики; пара упущенных минут на операционном столе может решить исход дела не в пользу выживания.
Хирург осматривает обнаженные раны, а затем обращает внимание на пропитанные гноем повязки, которые их покрывали. Он знает толк в гное, подобно тому, как древний прорицатель верил, что может предсказывать будущее по внутренностям жертвенного животного. «Доброкачественный» гной бледный с относительно слабым запахом это хороший знак; потемнение и неприятный запах указывают на то, что гной стал хуже и что пациент вскоре пойдет по тому же пути.
Хотя и был очень искусным, хирург не знал, что на самом деле происходит в гное. Это поле боя, схватка не на жизнь, а на смерть между атакующими бактериями и миллиардами белых клеток крови пациента. Хирург мог слышать о микробах, но понятие об инфекции не укоренится у него в мозгу в течение еще 20 лет. А пока он будет поднимать на смех любого, кто дерзнет предположить, что ему следовало бы мыть руки между операциями или даже между посещением зала для проведения вскрытий и операционной.