Первое, превращение эллиптической орбиты в круговую происходит в твердом состоянии при низкой температуре, что характерно для некоторых случаёв фазовых переходов 2-го рода (изменение магнитных свойств, появление сверхпроводимости).
Второе, круговые орбиты малых размеров, см. рис. 1, кривая 1.1, должны способствовать снижению электрического и гидродинамического сопротивления, что корреспондируется с явлениями сверхпроводимости и сверхтекучести, наблюдаемыми при фазовых переходах 2-го рода.
И, наконец, третье: превращение анизодиаметричных эллиптических орбит в круговые объясняет повышение хрупкости твёрдых тел, их переход в порошкообразное состояние, так что можно говорить о пятом виде агрегатного состояния порошкообразном агрегатном состоянии веществ.
Понятно, что изменение характера орбит при уменьшении их энергии предписывается обратно квадратичным законом тяготения и потому является всеобщим, универсальным. Следовательно, на основании изложенного можно полагать, что и фазовый переход 2-го рода также имеет универсальный характер, что каждое вещество претерпевает этот переход при снижении температуры в определённом интервале температур путём изменения типа орбиты с эллиптической на круговую. Однако, изменяющиеся свойства (сверхпроводимость, сверхтекучесть, намагниченность, хрупкость) и интервал температур перехода зависят от индивидуальных особенностей вещества, хотя общая закономерность, задаваемая переходом от эллиптических орбит к менее энергоёмким круговым должна сохраняться во всех случаях.
Теперь продемонстрируем действие рассмотренных законов в широком диапазоне атомных параметров. Начнём с крайних случаёв с самой коротковолновой серии рентгеновского излучения и строения атома урана, обладающего наибольшей атомной массой.
Рентгеновское излучение α1 в серии K атома урана имеет самую короткую длину волны 0,01259 нм. Поэтому можно полагать, что такая длина волны (частота) соответствует минимальному квантовому числу n = 1 и радиусу орбиты, то есть в соответствии с уравнением (4) для первой орбиты k = r. В свою очередь, зная длину волны λ, рассчитываем радиус по уравнениям 3-го закона Кеплера, которые применительно к атомным системам имеют вид:
λ= 2πcr1,5/(gmd)0,5, (9)
ν = (gmd)0,5/2πr1,5, (10)
где λ- длина волны, ν- частота излучения, с скорость света, r радиус орбиты, g константа микро гравитации, m атомная масса, d дальтон.
Подставив в уравнение (9) приведенные выше значения величин, получим радиус первой орбиты атома урана, с которой происходит рентгеновское излучение серии Kα1, r = 0,069 пм. Радиусы других орбит рассчитываем по уравнению Бора (4) умножением на квадрат соответствующего орбите квантового числа, см. таблицу 1. Так, например, для следующей рентгеновской L серии при n = 2 получена длина волны λcal= 0,1011 нм при справочном значении λ exp = 0,07479 ни, а для М серии при n = 3 соответственно λcal= 0,3412 нм и λexp = 0,3329 нм. Для других серий при n = 4, 5, 6 и 7 также получено хорошее совпадение расчётных и экспериментальных данных, см. столбцы 6 и 7 в таблице 1.
Таблица1. Параметры атома урана.
Удовлетворительное совпадение также наблюдается для расчетных и экспериментальных значений атомных радиусов, характеризующих длину химических связей и размер атома, см. столбцы 2 и 3. Рассчитанные по уравнениям (1) и (2) длины связей равны 89,42 и 104,9 пм. Экспериментальные значения почти совпадают с этими величинами и равны соответственно 89 и 104 пм. Расчётная длина ковалентной связи равна 139,7 пм, экспериментальное значение 142 пм. Наконец, расчётный радиус атома урана 152,4 пм практически совпадает с экспериментальной величиной 153 пм.
Достоверность модели строения атома урана подтверждается совпадением частот излучения, рассчитанных по уравнению Бальмера-Ридберга и частот рассчитанных по уравнению 3-го закона Кеплера, в котором использовали радиус r, рассчитанный по уравнению Бора (4).
Достоверность модели строения атома урана подтверждается совпадением частот излучения, рассчитанных по уравнению Бальмера-Ридберга и частот рассчитанных по уравнению 3-го закона Кеплера, в котором использовали радиус r, рассчитанный по уравнению Бора (4).
Уравнение Бальмера-Ридберга выражает изменение частот излучения в зависимости от двух рядов квантовых чисел ni и nj:
ν = cR(1/ni2 -1/nj2), (11)
Здесь с скорость света, R0 постоянная Ридберга, которая длительное время была известна только для водорода. В нескольких работах [12] было показано, что постоянной Ридберга для химического элемента является его энергия первой ионизации. Для урана она равна 7,11 эВ или 11,39.10-12 эрг или в обратных сантиметрах ν0 = ν/с = 0,5734.105 см-1. Таким образом, имеется возможность рассчитать частоты по уравнению Бальмера-Ридберга для урана и сравнить их с частотами, рассчитанными по уравнениям Бора (4) и 3-го закона Кеплера (9). Результаты таких расчётов представлены в таблице 1 столбцы 4, 5, 6 и 7.
Частоты и длины волн в столбцах 4 и 5 для квантовых чисел 2447 рассчитывали по уравнениям 3-го закона Кеплера (9) и (10) с использованием величины радиуса, рассчитанного по уравнению Бора (1). По уравнению Бальмера-Ридберга рассчитывали характерные частоты и длины волн, которые можно сравнить с рассчитанными по 3-ему закону Кеплера. К числу последних относятся предельные и головные частоты.
Предельные частоты реализуются, когда второе квантовое число nj= и рассчитываются по уравнению:
ν = cR/ni2, (6)
где R0 постоянная Ридберга, равная для урана 0,5734.105 см-1.
Для атома урана реализуются две предельные частоты: для ni= 1 ν = 1,719.1015 c-1 и для ni= 2 ν = 0,4298.1015 с-1, см. столбец 5. Расчёт по уравнению для 3-го закона Кеплера дал близкие значения, соответственно
1,716.1015 и 0,4324.1015 с-1, см. столбец 4.
Головные частоты в каждой серии излучения рассчитываются по уравнению Бальмера-Ридберга и соответствуют первому (головному) по порядку квантовому числу nj. В столбце 5 приведены головные частоты полученные для ni = 1, nj= 2: 1,289.1015 и для ni= 2, nj= 3: 0,2388.1015 с-1, которые достаточно точно совпадают с частотами, рассчитанными по уравнению 3-го закона Кеплера, соответственно 1,205.1015 и 0,2437.1015 с=1
Приведенные данные однозначно говорят о совместимости результатов, получаемых по уравнениям 3-го закона Кеплера с использованием микро гравитационной константы g и классического уравнения атомной физики Бальмера-Ридберга, что подтверждает адекватность предложенной микро гравитационной модели строения атома.
Литература1. Е. Беркович, «Троицкий вариант Наука» 5(299), 10 марта 2020 года и 6(300), 24 марта 2020 года.
2. П. С. Лаплас, Изложение системы мира, Ленинград, Изд. «Наука», 1982 г., глава 18, О молекулярном притяжении, с. 226256.
3. АТ. Серков, Гипотезы, Москва, 1998, ВИНИТИ, с.87.
4. Б. В. Дерягин, Н. В. Чураев, В. М. Муллер, Поверхностные силы, 1985, Изд. «Наука», с106.
5. J. N. Israelachvily, Contemporary Phys., 15, p.159, (1974).
6. J. N. Israelachvily, Intermolecular and Surface Forces, 3rd edn N. Y. Acad. Press, 2011, p.151.
7. АТ. Серков, МБ.Радишевский, АА. Серков, Гипотезы-2, О смене научной парадигмы в естествознании, Москва, 2016, ВИНИТИ, с.38.
8. АТ. Серков, АА. Серков, http://www.sciteclibrary.ru/rus/catalog/pages/11885.html; http://www.sciteclibrary.ru/eng/catalog/pages/11886.html
9. АТ. Серков, Космические исследования, т.47, 4, 2009, с.379.10.
10. АТ. Серков, МБ.Радишевский, АА. Серков, Гипотезы-2, О смене научной парадигмы в естествознании, Москва, 2016, ВИНИТИ, с.13