Однако в развитии ускорителей доминантными всегда оставались требования физики высоких энергий, под влиянием которых были осуществлены два протонных машин в диапазоне 0,11 ТэВ. Первым из них был запущенный в 1972 году синхротрон в Национальной лаборатории имени Ферми в Батейвии, недалеко от Чикаго, руководимой тогда Р. Вильсоном. Радиус орбиты этой машины, постепенно наращивавший свою энергию от 200 до 500 ГэВ, составляет 1 километр. Вслед за ним в конце 1976 года вступил в строй аналогичный ускоритель в ЦЕРНе на энергию 400 ГэВ. Этой работой руководил Дж. Адамс.
Также отмечая и крупнейший БАК, на энергию 6,3 ТэВ, созданный уже в 2008 году в том же ЦЕРН. При этом являясь ускорителем на встречных пучках, с радиусом 26 656 м, на протон-протонные реакции.
Необходимо обратить внимание на некоторые новые важные тенденции в современной ускорительной технике. Прежде всего, работа современного крупного ускорителя невозможна без высокой степени его автоматизации, под которой следует понимать не только автоматизацию проведения эксперимента и обработки накапливаемого «сырого» материала очень большого объёма, но и автоматическое управление режимом самого ускорителя. Мощным средством в этом направлении является непрерывное получение информации о динамике циркулирующего пучка, оперативная её переработка с помощью быстродействующей ЭВМ и автоматическое введение корректирующего воздействия на те или иные подсистемы установки. Разработка систем автоматизации стала сейчас самостоятельной отраслью, не менее важной, чем, скажем, конструирование магнита или высокочастотной системы.
Вторым необходимым требованием к современному большому ускорителю является его универсальность, под которой понимается возможность использования не только первичного пучка, но и разнообразных вторичных частиц. Особенно широкие возможности предоставляет здесь метод накопления вторичных частиц и установки со встречными пучками, комбинируемые с основным ускорителем. Фактически большая машина является сейчас центром целого ускорительного комплекса, состоящего из нескольких ускорительных и накопительных установок с возможностью постановки самых разнообразных экспериментов, идущих одновременно.
Наконец, надо отметить, что создание больших ускорителей сейчас оказывается под силу лишь крупным государствам, как было отмечено, развитым в промышленном отношении, но и для них сопутствующие материальные и трудовые затраты весьма ощутимы. Поэтому для уникальных машин, исчисляемых единицами, всё больше значение приобретают вопросы интернациональной кооперации и привлечение в процессы реализации проектов международные собрания.
Первыми примерами такого рода стал ЦЕРН организация двенадцати стран Западной Европы и ОИЯИ в Дубне. В подготовке и проведении экспериментов на ускорителе ИФВЭ в Серпухове активное участие принимают учёные во Франции, ЦЕРНа и США. Примером активного сотрудничества учёных разных политических систем может служить участие советских специалистов в экспериментах на ускорителях ЦЕРН и в Батейвии. Можно надеяться, что в дальнейшем эти традиции будут всё больше укрепляться и развиваться.
Ближайшие перспективы развития ускорителей пока не предвещают качественного изменения основных тенденций. Серьёзные надежды возлагаются на использование сверхпроводящих магнитных систем с большим магнитным полем, позволяющим уменьшить радиус кольца и существенно сократить потребляемую мощность. Сейчас, например, интенсивно идёт сооружение сверхпроводящего магнита в Батейвии, который должен быть расположен в том же туннеле и при поле порядка 4 Тл позволит удвоить максимальную энергию, доведя её до 1 ТэВ.
Особенно перспективно использование сверхпроводящих систем в накопительных системах, предусматриваемое, например, для протонного накопителя ISABELLE с энергией по 400 ГэВ в каждом пучке, инжектором для которого должен служить Брукхейвенский синхротрон. Имеется также несколько интересных проектов протонных и протон-антипротонных накопительных систем в Новосибирске и ЦЕРНе. Существенно подняты энергии для электрон-позитронных пучков с вводом в строй накопителей RETRA в Гамбурге (до 19 ГэВ) и PEP в Станфордском центре (1824 ГэВ).
Крупнейшим из осуществляемых проектов, отражающим развитие ускорительной физики на ближайшее десятилетие, является советский проект ускорительно-накопительного комплекса (УНК) в Серпухове. В основе его лежит протонный сверхпроводящий синхротрон на 3 ТэВ (радиус около 3 км). В том же туннеле должен быть размещён предварительный ускоритель бустер с электромагнитом обычного типа, инжектором для которого будет существующих в Серпуховский синхротрон. Предусматривается возможность создания без специального накопительного кольца встречных pp-пучков с энергией 1,5 ТэВ в системе центра инерции. Кроме того, бустер можно использовать для накопления электронов и ep-столкновений. Изучается также возможность осуществления в УНК протон-антипротонных соударений, а также сооружения дополнительного кольца с постоянным полем, равным 5 Тл, что позволит получить встречные протонные пучки с энергией 23 ТэВ.
Крупнейшим из осуществляемых проектов, отражающим развитие ускорительной физики на ближайшее десятилетие, является советский проект ускорительно-накопительного комплекса (УНК) в Серпухове. В основе его лежит протонный сверхпроводящий синхротрон на 3 ТэВ (радиус около 3 км). В том же туннеле должен быть размещён предварительный ускоритель бустер с электромагнитом обычного типа, инжектором для которого будет существующих в Серпуховский синхротрон. Предусматривается возможность создания без специального накопительного кольца встречных pp-пучков с энергией 1,5 ТэВ в системе центра инерции. Кроме того, бустер можно использовать для накопления электронов и ep-столкновений. Изучается также возможность осуществления в УНК протон-антипротонных соударений, а также сооружения дополнительного кольца с постоянным полем, равным 5 Тл, что позволит получить встречные протонные пучки с энергией 23 ТэВ.
Кажущийся естественным вопрос, какая же энергия нужна физикам-экспериментаторам, вообще лишён физического смысла. Ответ на него всегда один нужна энергия в 5 раз больше, чем уже достигнутая. Причина этого проста: эксперимент на ново качественном уровне (в данном случае энергии) всегда ставит больше вопросов, чем даёт ответов. Поэтому сомневаться в дальнейшем росте энергии ускоренных частиц нет никаких оснований.
Данный короткий обзор призван дать лишь представление об общей логике развития ускорителей и ни в коей мере не претендует на полноту. Мы не могли даже перечислить все установки с рекордными параметрами или с интересными физическими и техническими особенностями.
И делая некоторое примечание, важно указать, что в некоторых случаях указываемые данные ссылались на момент 80-х годов и по прошествии не малого количества времени важно отметить возможность создания нового типа ускорителей системы из циклотрона и линейного ускорителя ускорителя типа ЛЦУ, высокоточного типа, с большими токами, в котором пучок вылетающий из самого циклотрона контролировался бы добавлением необходимой порции энергий уже на линейном ускорителе, либо наоборот.
Делая заключение к данному обзору, укажем, что важно изучать историю развития науки, в которой осуществляется работа, ибо всегда можно найти аспекты, способные дать своего рода наводку и помощь. В дальнейшем уже начнётся разбор самой физики ускорителей, с подробным их рассмотрением.
Контрольные вопросы
1. Укажите параметры ускорителя, созданного в 1967 году в Серпухове на энергию 76 ГэВ.
2. Какой порядок энергии ста революционным, благодаря созданному ускорителю в 1972 году в Национальной лаборатории имени Ферми в Батейвии?
3. Чему равна энергия пучка протон-протонного типа в БАК?
4. Кто работал над созданием ускорителя по электрон-позитронным соударения на энергию 600 МэВ?
5. Где был создан синхротрон на энергию 76 ГэВ в 1967 году?
6. Чему равна энергия синхротрона в Серпухове, созданный к 50-летию СССР?
7. Какое основное преимущество циклотрона?
8. Какова была расчётная интенсивность линейного ускорителя протонов Л. Розена н энергию 800 МэВ?
9. В каком году и где был создан ускоритель Л. Розена?
10. Чему была равна напряжённость поля в ускорителе В. П. Саранцева для тяжёлых ионов?
Лекция 4
Тема. Вакуумные механизмы
Поскольку изначальная логика исследования мельчайших частиц основана на принципе их разбиения, либо оказания какого-либо более сильного взаимодействия, возникает необходимость в ускорении определённой имеющей заряд частицы, откуда и появляется первая модель электростатического ускорителя, представляющий собой источник заряженных частиц напротив заземления, где создаётся разность потенциалов в вакуумном сосуде. При этом кинетическая энергия пучков испускаемых частиц, определяется по (1).
При расчёте (1), важно также учитывать фактор наличия количества заряда в одной частице, к примеру, если у электрона имеется всего один элементарный заряд, то у альфа-частицы или ядра гелия их 2, а у иона алюминия 13, данное число умножается на общий заряд, откуда и получается общая кинетическая энергия.
Яркими примерами, подобных ускорителей являются ускорители Ван-де-Граафа, подробное их рассмотрение будет в последующих лекциях. Важно лишь указать, что кинетическая энергия не измеряется в Джоулях, а в специальных единицах электронвольтах (эВ), которая равна 1,6*1019 Дж с производными в кэВ, МэВ, ГэВ, ТэВ. На электростатическом ускорителе максимальная энергия, которую можно получить для частиц равна 10 МэВ, при дальнейшем увеличении, наблюдается пробой между электродами, при котором невозможно проводить ускорение.