Нейроморфная инженерия (Neuromorphic engineering) это использование принципов построения биологических нервных систем при конструировании микросхем; концепция, предложенная Карвером Мидом (Carver Mead) в конце 1980-х гг. с целью создания искусственных нейронов, СБИС и систем, копирующих архитектуры нервных систем биологических объектов.
Нейроморфная сеть (Neuromorphic network) это сеть, узлами которой являются нейроморфные устройства.
Нейроморфная теория (Нейроморфная теория это методология, технология, которая первоначально ставила своей целью реализовать биологические принципы в аналоговых управляющих системах и датчиках, а в настоящее время этот термин употребляется также и для описания аналоговых, цифровых и гибридных аппаратных и программных систем, реализующих модели ИНС
Нейроморфное аппаратное обеспечение (Neuromorphic hardware) это аппаратное обеспечение для систем ИИ, построенное на нейроморфной элементной базе
Нейроморфное оборудование (Neuromorphic equipment) это любое электрическое устройство, которое имитирует природные биологические структуры нервной системы человека.
Нейроморфные системы (Neuromorphic systems) это реализация в кремнии систем, архитектура которых базируется на нейробиологии (дисциплина, изучающая физиологию, строение, развитие мозга и нервной системы); используют вычисления с массовым параллелизмом. Нейроморфные системы могут быть как цифровыми, так и аналоговыми, при этом роль синапсов играет либо программное обеспечение, либо мемристоры, которые могут хранить значение из некоторого диапазона величин, а не только традиционные единицу и ноль, что позволяет имитировать изменение силы связи (весов) между двумя синапсами. Изменение этих весов в моделируемых синапсах это один из способов позволить нейроморфным системам учиться.
Нейроморфный ИИ Neuromorphic artificial intelligence (neuromorphic AI) это системы ИИ, строящиеся по образу и подобию мозга человека, характеризующиеся громадным быстродействием на определённых видах задач (обработки и распознавания изображений, машинного обучения и др.) и на несколько порядков меньшим энергопотреблением, чем у сравнимых по производительности суперкомпьютеров.
Нейроморфный исследователь (Neuromorphic researcher) это учёный-исследователь в области ИНС.
Нейроморфный процессор (Neural processing unit NPU) это процессор, выполняющий нейрокомпьютерные (нейросетевые) вычисления.
Нейронная сеть (Artificial Neural Network) это математическая модель, а также ее программное или аппаратное воплощение, построенная по принципу организации и функционирования биологических нейронных сетей сетей нервных клеток живого организма.
Нейронная сеть AlexNet (Нейронная сеть AlexNet) это название нейронной сети, победившей в конкурсе ImageNet Large Scale Visual Recognition Challenge в 2012 году. Она названа в честь Алекса Крижевского, в то время аспиранта компьютерных наук в Стэнфордском университете.
Нейронные сети прямого распространения (FeedForward Networks) это нейронная сеть с многими слоями, где данные распространяются только вперёд.
Нейронный процессор (Neural processor) это специализированный класс микропроцессоров и сопроцессоров (часто являющихся специализированной интегральной схемой), используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.
Нейронный сетевой процессор (Neural Network Processor NNP) это специализированный класс микропроцессоров и сопроцессоров (часто являющихся специализированной интегральной схемой), используемый для аппаратного ускорения работы алгоритмов искусственных нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта
Нейротехнологии (Neurotechnologies) это киберфизические системы, частично или полностью замещающие/дополняющие функционирование нервной системы биологического объекта, в том числе на основе искусственного интеллекта.
Неконтролируемое машинное обучение (Неконтролируемое машинное обучение это обучение модели поиску шаблонов в наборе данных, обычно немаркированном наборе данных. Наиболее распространенное использование неконтролируемого машинного обучения кластеризация данных в группы похожих примеров. Например, неконтролируемый алгоритм машинного обучения может группировать песни вместе на основе различных свойств музыки. Полученные кластеры могут стать входными данными для других алгоритмов машинного обучения (например, для службы музыкальных рекомендаций). Кластеризация может быть полезна в областях, где трудно получить истинные метки. Например, в таких областях, как борьба со злоупотреблениями и мошенничеством, кластеры могут помочь людям лучше понять данные. Еще одним примером неконтролируемого машинного обучения является анализ основных компонентов (PCA). Например, применение PCA к набору данных, содержащему содержимое миллионов тележек, может показать, что тележки с лимонами часто также содержат антациды. Сравните с контролируемым машинным обучением.
Неконтролируемое обучение (Неконтролируемое обучение это тип алгоритма машинного обучения, используемый для вывода выводов из наборов данных, состоящих из входных данных без помеченных ответов. Самый распространенный метод обучения без учителя кластерный анализ
Неоконнекционизм (Neoconnectionism) это подход в области когнитивистики и нейронауки, который заключается в компьютерном моделировании процессов обучения искусственными нейронными сетями, организованными и функционирующими по аналогии с биологической нервной системой.
Новые производственные технологии (New production technologies) это технологии цифровизации производственных процессов, обеспечивающие повышение эффективности использования ресурсов, проектирования и изготовления индивидуализированных объектов, стоимость которых сопоставима со стоимостью товаров массового производства.
«О»
Обезличивание персональных данных (Depersonalization of personal data) это действия, в результате которых становится невозможным без использования дополнительной информации определить принадлежность персональных данных конкретному субъекту персональных данных.
Обладатель информации (Information owner) это лицо, самостоятельно создавшее информацию либо получившее на основании закона или договора право разрешать или ограничивать доступ к информации, определяемой по каким-либо признакам.
Облачная робототехника (Сloud robotics) это область робототехники, которая пытается использовать облачные технологии, такие как облачные вычисления, облачное хранилище и другие интернет-технологии, основанные на преимуществах конвергентной инфраструктуры и общих сервисов для робототехники. При подключении к облаку роботы могут воспользоваться мощными вычислительными, накопительными и коммуникационными ресурсами современного центра обработки данных в облаке, который может обрабатывать и обмениваться информацией от различных роботов или агентов (других машин, интеллектуальных объектов, людей и т. д.).. Люди также могут делегировать задачи роботам удаленно через сети. Технологии облачных вычислений позволяют наделять роботизированные системы мощными возможностями при одновременном снижении затрат за счет облачных технологий. Таким образом, можно создавать легкие, недорогие, умные роботы с интеллектуальным «мозгом» в облаке. «Мозг» состоит из центра обработки данных, базы знаний, планировщиков задач, глубокого обучения, обработки информации, моделей среды, поддержки связи и т. д.
Облачные вычисления (Cloud computing) это информационно-технологическая модель обеспечения повсеместного и удобного доступа с использованием сети «Интернет» к общему набору конфигурируемых вычислительных ресурсов («облаку»), устройствам хранения данных, приложениям и сервисам, которые могут быть оперативно предоставлены и освобождены от нагрузки с минимальными эксплуатационными затратами или практически без участия провайдера.
Облачные сервисы искусственного интеллекта (AI cloud services) это инструменты для построения моделей искусственного интеллекта, API-интерфейсы и связанное ПО промежуточного слоя, которые позволяют создавать/ обучать, развертывать и использовать модели машинного обучения, работающие в предварительно созданной инфраструктуре в качестве облачных сервисов. Эти услуги включают автоматизированное машинное обучение, услуги машинного зрения и услуги по анализу языка.
Облачный процессор (Cloud TPU) это специализированный аппаратный ускоритель, предназначенный для ускорения рабочих нагрузок машинного обучения на Google Cloud Platform.
Обработка больших объемов данных (Processing of large volumes of data) это совокупность подходов, инструментов и методов автоматической обработки структурированной и неструктурированной информации, поступающей из большого количества различных, в том числе разрозненных или слабосвязанных, источников информации, в объемах, которые невозможно обработать вручную за разумное время.
Обработка естественного языка (Natural language processing) это класс решений, направленных на понимание языка и генерацию текста, несущего смысл, а также общение на естественном языке при взаимодействии компьютера и человека.
Обработка изображений (Image processing) это область прикладных научных исследований, связанных с анализом и обработкой цифровых изображений. Чётких границ между обработкой изображений, анализом изображений (image analysis) и техническим зрением (computer vision), а также, любые комплексные программные и/или аппаратные операции по компьютерной обработке (преобразованию) изображений, например повышение чёткости, коррекция цветов, сглаживание, уменьшение шумов и т. д.