Аппаратный Сервер (аппаратное обеспечение) (Hardware Server) это выделенный или специализированный компьютер для выполнения сервисного программного обеспечения (в том числе серверов тех или иных задач) без непосредственного участия человека. Одновременное использование как высокопроизводительных процессоров, так и FPGA позволяет обрабатывать сложные гибридные приложения.
Архитектура вычислительной машины (Architecture of a computer) это концептуальная структура вычислительной машины, определяющая проведение обработки информации и включающая методы преобразования информации в данные и принципы взаимодействия технических средств и программного обеспечения.
Архитектура вычислительной системыАрхитектура вычислительной системы это конфигурация, состав и принципы взаимодействия (включая обмен данными) элементов вычислительной системы.
Архитектура механизма обработки матриц (MPE)Архитектура механизма обработки матриц (MPE) это многомерный массив обработки физических матриц цифровых устройств с умножением (MAC), который вычисляет серию матричных операций сверточной нейронной сети.
Архитектура системы (Architecture of a system) это принципиальная организация системы, воплощенная в её элементах, их взаимоотношениях друг с другом и со средой, а также принципы, направляющие её проектирование и эволюцию.
Архитектура фон Неймана (модель фон Неймана, Принстонская архитектура) это широко известный принцип совместного хранения команд и данных в памяти компьютера. Вычислительные машины такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают принцип хранения данных и инструкций в одной памяти [15].
Архитектурная группа описаний (Architectural description group, Architectural view) это представление системы в целом с точки зрения связанного набора интересов.
Архитектурный фреймворк (Architectural frameworks) это высокоуровневые описания организации как системы; они охватывают структуру его основных компонентов на разных уровнях, взаимосвязи между этими компонентами и принципы, определяющие их эволюцию.
Асинхронные межкристальные протоколы (Asynchronous inter-chip protocols) это протоколы для обмена данных в низкоскоростных устройствах; для управления обменом данными используются не кадры, а отдельные символы.
Ассоциация по развитию искусственного интеллекта (Association for the Advancement of Artificial Intelligence) это международное научное сообщество, занимающееся продвижением исследований и ответственным использованием искусственного интеллекта. AAAI также стремится повысить общественное понимание искусственного интеллекта (ИИ), улучшить обучение и подготовку специалистов, занимающихся ИИ, и предоставить рекомендации для планировщиков исследований и спонсоров относительно важности и потенциала текущих разработок ИИ и будущих направлений.
«Б»
Байесовский классификатор в машинном обучении (Bayesian classifier in machine learning) это семейство простых вероятностных классификаторов, основанных на использовании теоремы Байеса и «наивном» предположении о независимости признаков классифицируемых объектов. Анализ на основе байесовской классификации активно изучался и использовался начиная с 1950-х годов в области классификации документов, где в качестве признаков использовались частоты слов. Алгоритм является масштабируемым по числу признаков, а по точности сопоставим с другими популярными методами, такими как машины опорных векторов. Как и любой классификатор, байесовский присваивает метки классов наблюдениям, представленным векторами признаков. При этом предполагается, что каждый признак независимо влияет на вероятность принадлежности наблюдения к классу. Например, объект можно считать яблоком, если он имеет округлую форму, красный цвет и диаметр около 10 см. Наивный байесовский классификатор «считает», что каждый из этих признаков независимо влияет на вероятность того, что этот объект является яблоком, независимо от любых возможных корреляций между характеристиками цвета, формы и размера. Простой байесовский классификатор строится на основе обучения с учителем. Несмотря на мало реалистичное предположение о независимости признаков, простые байесовские классификаторы хорошо зарекомендовали себя при решении многих практических задач. Дополнительным преимуществом метода является небольшое число примеров, необходимых для обучения [16].
Башня (Tower) это компонент глубокой нейронной сети, которая сама по себе является глубокой нейронной сетью без выходного слоя. Как правило, каждая башня считывает данные из независимого источника. Башни независимы до тех пор, пока их выходные данные не будут объединены в последнем слое.
Безопасность критической информационной инфраструктуры (Security of a critical information infrastructure) это состояние защищенности критической информационной инфраструктуры, обеспечивающее ее устойчивое функционирование при проведении в отношении ее компьютерных атак.
БенчмаркингБенчмаркинг это набор методик, которые позволяют изучить опыт конкурентов и внедрить лучшие практики в своей компании
Библиотека Keras (Библиотека Keras это библиотека Python, используемая для глубокого обучения и создания искусственных нейронных сетей. Выпущенный в 2015 году, Keras предназначен для быстрого экспериментирования с глубокими нейронными сетями. Keras предлагает несколько инструментов, которые упрощают работу с изображениями и текстовыми данными. Помимо стандартных нейронных сетей, Keras также поддерживает сверточные и рекуррентные нейронные сети. В качестве бэкэнда Keras обычно использует TensorFlow, Microsoft Cognitive toolkit или Theano. Он удобен для пользователя и требует минимального кода для выполнения функций и команд. Keras имеет модульную структуру и имеет несколько методов предварительной обработки данных. Keras также предлагает методы. evluate () и. predict_classes () для тестирования и оценки моделей. Github и Slack организуют форумы сообщества для Keras.
Библиотека Matplotlib (Библиотека Matplotlib это комплексная, популярная библиотека Python с открытым исходным кодом для создания визуализаций «качества публикации». Визуализации могут быть статическими, анимированными или интерактивными. Он был эмулирован из MATLAB и, таким образом, содержит глобальные стили, очень похожие на MATLAB, включая иерархию объектов.
Библиотека Numpy (Библиотека Numpy это библиотека Python, представленная в 2006 году для поддержки многомерных массивов и матриц. Библиотека также позволяет программистам выполнять высокоуровневые математические вычисления с массивами и матрицами. Можно сказать, что это объединение своих предшественников The Numeric и Numarray. NumPy является неотъемлемой частью Python и по существу предоставляет программе математические функции типа MATLAB. По сравнению с обычными списками Python, он занимает меньше памяти, удобен в использовании и имеет более быструю обработку. При интеграции с другими библиотеками, такими как SciPy и / или Matplotlib, его можно эффективно использовать для целей анализа данных и анализа данных [17].
Библиотека Pytorch & Torch (Библиотека Pytorch & Torch это библиотека машинного обучения, которая в основном используется для приложений обработки естественного языка и компьютерного зрения. Разработанная исследовательской лабораторией искусственного интеллекта и выпущенная в сентябре 2016 года, это библиотека с открытым исходным кодом, основанная на библиотеке Torch для научных вычислений и машинного обучения. PyTorch предоставляет операции с объектом n-мерного массива, аналогичные NumPy, однако, кроме того, он предлагает более быстрые вычисления за счет интеграции с графическим процессором. PyTorch автоматически различает построение и обучение нейронных сетей. PyTorch это внесла свой вклад в разработку нескольких программ глубокого обучения Tesla Autopilot, Ubers Pyro, PyTorch Lighten и т. д.
Библиотека Scikit-learn (Библиотека Scikit-learn это простая в освоении библиотека Python с открытым исходным кодом для машинного обучения, построенная на NumPy, SciPy и matplotlib. Его можно использовать для классификации данных, регрессии, кластеризации, уменьшения размерности, выбора модели и предварительной обработки.
Библиотека SciPy (Библиотека SciPy это библиотека Python с открытым исходным кодом для выполнения научных и технических вычислений на Python. Она была разработана открытым сообществом разработчиков, которое также поддерживает его поддержку и спонсирует разработки. SciPy предлагает несколько пакетов алгоритмов и функций, которые поддерживают научные вычисления: константы, кластер, fft, fftpack, интегрировать и т. д. SciPy по сути является частью стека NumPy и использует многомерные массивы в качестве структур данных, предоставляемых модулем NumPy. Первоначально выпущенный в 2001 году, она распространялась по лицензии BSD с репозиторием на GitHub.