Для многих исследователей методы максимального правдоподобия, которые следуют давней традиции в математической статистике, дают наибольшую надежду на то, что построенное дерево получилось хорошим. Однако можно столкнуться с рядом проблем. Во-первых, вычисляемые вероятности зависят от выбора конкретной модели эволюции, и если эта модель плохо описывает реальный процесс, то можно поставить под сомнение достоверность результатов. Во-вторых, как и в случае с экономностью, метод требует рассмотрения всех возможных деревьев, а значит, больших вычислительных затрат. Для каждой рассматриваемой топологии дерева требуется громоздкий расчет, чтобы найти оптимальные параметры модели, согласующиеся с данными. Если количество таксонов велико, то невозможно перебрать все возможные деревья, оптимизируя параметры модели для каждого, поэтому на практике используются эвристические методы сокращения числа свободных переменных. Хотя с практической точки зрения кажется, что данные методы работают хорошо, максимизация вероятности требует гораздо больше вычислительных ресурсов, чем другие подходы.
Другой способ классификации методов построения филогенетических деревьев состоит в том, чтобы разделить их на два класса: те, которые выбирают дерево на основе некоторого критерия оптимальности, и те, которые представляют собой алгоритмы, создающие дерево. Метод максимальной экономии и метод максимального правдоподобия основаны на критериях оптимальности, тогда как обсуждаемые ранее дистанционные методы являются алгоритмическими. Некоторые исследователи утверждают, что методы имеющие критерии оптимальности по своей сути превосходны, потому что они, по крайней мере, ясно указывают, на чем основан выбор дерева. Однако, поскольку поиск оптимального из большого числа деревьев может оказаться невыполнимым с вычислительной точки зрения, компьютерные реализации методов экономии и правдоподобия иногда начинаются с рассмотрения деревьев, созданных алгоритмическим методом, например, методом присоединение соседей, или одного из его вариантов, полученного путем циклического перемещения нескольких веток исходного дерева.
Одна из трудностей выбора оптимального метода для использования заключается в том, что можно найти хорошие аргументы за и против любого из методов. Тем не менее, необходимость строить деревья для исследования биологических проблем слишком велика, чтобы можно было не использовать существующие методы, а ожидать появления новых. Достаточно разумный подход заключается в том, чтобы всегда использовать несколько различных методов для имеющихся данных. Вместо того, чтобы доверять одному методу, для получения точного дерева, посмотрите, дают ли разные методы примерно одинаковые результаты. Они часто это делают и если используемые методы этого не делают, то стоит выяснить, почему такое происходит. Недостаточно просто запустить компьютерную программу на имеющихся данных и принять получившееся дерево как истинное.
Даже когда дерево уже выбрано тем или иным методом, было бы желательно дать количественную оценку, насколько можно быть уверенным в правильности выбора. Частичный ответ на этот вопрос может дать статистический метод самопроверки, бутстрэппинга, что буквально означает «подтягивание за ремешки обуви». В процедуре самопроверки истинные последовательности данных используются для создания набора новых, псевдореплицированных последовательностей той же длины. Основания в конкретном сайте для генерации новых последовательностей выбираются с той же вероятностью какую имели основания, появляющиеся в случайно выбранном сайте в исходных последовательностях. Таким образом будет построено и записано дерево для филогении псевдорепликантов. Затем эта процедура повторяется много раз, что дает большую коллекцию подобных деревьев. Если достаточно высокий процент получаемых таким способом деревьев согласуется с первоначальным деревом, полученным с использованием исходных данных, то можем быть уверены в истинности проверяемого дерева.
Однако важным предостережением при использовании вышеописанного метода является то, что этот метод помогает только оценить влияние изменчивости в последовательностях на построение дерева. Данный метод ничего не говорит о фундаментальной обоснованности алгоритма, с помощью которого выбирается дерево он только указывает, как изменчивость данных могла повлиять на результат.
На большом количестве таксонов настоятельно рекомендуется использовать специализированное компьютерное программное обеспечение для использования любого из упомянутых методов. Двумя широко используемыми пакетами, реализующими различные методы, являются PAUP* (Суоффорд, 2002) и PHYLIP (Фельзенштейн, 1993). Если вдруг когда-нибудь получите доступ к любому из них, то стоит изучить их возможности.
5.6. Приложения и перспективы
Вернемся к вопросу о гоминоидной филогении, который звучал по введении в эту главу. Какое дерево можно вывести из данных митохондриальной ДНК? Хотя можно было бы прочитать ответ в специализированной литературе, но предпочтительно, если найдете его самостоятельно. В упражнениях ниже будет возможность применить некоторые методы пройденной главы к данным, начиная либо с необработанных последовательностей, либо с некоторых расстояний, уже вычисленных из последовательностей.
Анализ данных, который впервые выполнил Хаясака с соавторами в 1988 году опирается в первую очередь на использование алгоритма присоединения соседей, как и анализ, который можно легко осуществить с помощью MATLAB. Если есть доступ к специализированному программному обеспечению, предназначенному для применения метода максимальной экономии, максимального правдоподобия или других методов, то настоятельно рекомендуется посмотреть, дают ли эти методы аналогичные результаты.
Кроме того, имейте в виду, что анализ, который делаете, всегда основан лишь на одном конкретном участке ДНК. Исследования, основанные на других ортологичных последовательностях, могут дать разные результаты. Кроме того, существует много подходов к филогенетическому выводу, которые не основаны на последовательностях. Должны быть скрупулёзно изучены доказательства адекватности каждого из используемых методов, прежде чем делать сильные заявления о филогении гоминоидов.
По мере развития методов построения филогенетического дерева из данных последовательности ДНК они были использованы и для изучения ряда других интересных вопросов. Даже беглый обзор высокорейтингового исследовательского журнала, такого как Science, обнаруживает большое количество статей, в которых генетические последовательности используются для исследования эволюции различных видов от общего предка. Вот лишь несколько примеров некоторых недавних приложений.
1. Исследование того, параллельна ли эволюция нескольких видов друг другу: например, эволюцию хозяев и паразитов можно изучить, построив отдельные филогенетические деревья для каждого из них. Сходство топологий деревьев может указывать на то, эволюционировали ли паразиты вместе с хозяином, или паразиты «перепрыгнули» от одного вида хозяина к другому, изучал Хафнер в 1994 году. Аналогичным образом, деревья для двух симбиотических видов, таких как муравьи, растущие грибы и грибы, которые они выращивают, помогают указать, как далеко в эволюционной истории простирается симбиотическое партнерство. Эти вопросы изучали Чапел и Хинкл в 1994.
2. Определение вероятных источников инфекции вируса иммунодефицита человека (ВИЧ) путем построения деревьев из последовательностей ВИЧ у ряда инфицированных лиц: Было несколько судебно-медицинских применений этого, к случаям СПИДа во Флориде, как следует из публикаций Альтмана 1994 года и Оу 1992 года, а так же их приложения к делу врача, обвиняемого в умышленном введении ВИЧ бывшему любовнику, исследовал Фогель в серии работ 1997 и 1998 годов.
3. Изучением того, вошли ли гены в геном определённого вида через латеральный перенос занимались Андерссон и Зальцберг в 2001 году: когда дерево строится из последовательностей ДНК для гена, это действительно «генное дерево», показывающее отношения генов, которые могут быть, а могут и не быть такими же, как отношения таксонов. Поскольку считается, что некоторые человеческие гены были получены путем латерального переноса от бактерий, заразивших нас, некоторые гены могут оказаться более тесно связанными с некоторыми бактериями, чем с другими млекопитающими. Если подозревается, что ген возник у эукариот в результате латерального переноса от бактерий, то можно построить дерево, используя последовательности генов как эукариот, так и бактерий. Модель кластеризации должна помочь определить, были ли гены латерально переданы или нет.
4. Мониторинг ограничений на охоту на китов: образцы ДНК из китового мяса, продаваемого в качестве пищи, и от китов в дикой природе были использованы для строительства дерева, указывая не только на виды продаваемых китов, но даже на океан происхождения, что доказали Бейкер и Палумби в 1994 году.