Поля и вихроны. Структуры мироздания Вселенной. Третье издание - Александр Александрович Шадрин 47 стр.


В настоящее время физики планируют проверить Стандартную Модель, изучая распады тау-лептонов. Эти частицы  родственники электронов, которые имеют такой же заряд и вообще много общего, кроме массы, которая у тау-лептонов в 3 тысячи раз больше. Именно в процессе их распада можно увидеть процессы, которые называют новой физикой. Она призвана объяснить происхождение массы, темной материи и энергии.

2.6. Мезоны

Мезоны  это промежуточные состояния распадающихся оболочек, образующих внутренние и внешние оболочки атомных ядер. Основной источник этих мезонов верхние слои атмосферы, с ядрами атомов газа которой сталкиваются космические и солнечные протоны. Процесс производства мезонов  это ионизация целых кластеров атомных ядер, т. е. ядерных оболочек, мгновенно распадающихся в более долго живущие подобные частицы с тем же спином, т. е. в мезоны. Время, которое затрачивается на переход таких микрочастиц к мезонам от момента взаимодействия до их рождения, является сугубо ядерным и оценивается порядком 1023 секунды. За такое время зарегистрировать истинную частицу, её структуру и другие параметры совершенно невозможно.


Таблица мезонов


Недавно Коллаборация LHCb БАКа опубликовала результаты исследования распада B-мезона на тройку адронов: ψ», π и K+. Данные совершенно однозначно свидетельствуют в пользу того, что в процессе распада на короткое время появилась и распалась «вопиюще экзотическая» частица Z (4430). Эта частица  необычный мезон, не вписывающийся в стандартные рамки и состоящий как минимум из двух кварк187-антикварковых пар. Его существование было известно и раньше, но только сейчас стало окончательно доказано, что это реальная экзотическая частица. Со слов И. Иванова188 по методам исследований на БАКе:

«Берут и сталкивают частицы, при этом они разлетаются, может рождаться что-то новое. Этот способ прекрасно работает, если вы хотите узнать, например, какая энергия сидит вот в этих кварках. Именно в кварках, потому что они несут основную часть энергии. Но, к сожалению, это не помогает узнать про структуру облака глюонов. Ведь это не просто какая-то плотность глюонов  это новая структура, которая как будто сама сконденсировалась и возникла».

По этому поводу есть одно очень серьёзное замечание  ни в ЦЕРНе, ни в США, ни в РФ, ни в Японии и даже в Палате мер и эталонов в Париже пока ещё не дано вообще определение субстанции энергии в САП, тем более в математических кварках.

Согласно САП кварковая модель строения адронов выглядит очень «просто». Берем кварки, комбинируем их так, чтобы их суммарный цветовой заряд  характеристика, обеспечивающая сильное взаимодействие между кварками,  скомпенсировался, и тогда должен получиться вполне жизнеспособный адрон. Минимальными для компенсации цвета являются комбинации из трех кварков или кварк-антикварковые пары. Теоретически можно соорудить и более сложные бесцветные комбинации, например шестикварковые, пентакварки (четыре кварка и один антикварк), тетракварки (два кварка и два антикварка) и так далее (фото).


Фото. Кварковое устройство пи-мезона, протона и предполагаемый кварковый состав частицы Zc (3900)  одного из кандидатов в тетракварки. Фото из статьи E. Swanson, 2013. New Particle Hints at Four-Quark Matter


Такие адроны, не вписывающиеся в минимальную схему, называются экзотическими. С точки зрения наивной кварковой модели все эти комбинации тоже имеют право на существование. Проблема в том, что в эксперименте их нет  а точнее, не было на протяжении очень долгого времени. Если насильно взять и соединить вместе шесть кварков (например, комбинацию uuuudd) с правильными цветами, то они распределятся по двум протонам, а не образуют один большой адрон. Если поместить вместе два кварка и два антикварка, то они просто сформируют два мезона, которые разлетятся друг от друга. Почему природа ограничивается только минимальными наборами кварков и настолько «не любит» многокварковые состояния  одна из главных загадок этого раздела физики. Тот факт, что Z (4430) распадается на ψ» и π, означает, что это заряженная частица. Тот факт, что он распадается очень быстро, означает, что распад идет за счет сильного взаимодействия, а оно не меняет тип кварков. Поэтому если в этом процессе следить за отдельными кварками, она однозначно говорит о том, что Z (4430) не вписывается в кварк-антикварковую схему. Исследования сечений взаимодействий пучков электронов области энергий E ~ 9 ГэВ привели к открытию нового семейства частиц, имеющих в своем составе опять новый b-кварк. В 1977 году были открыты нейтральные Y-мезоны (ипсилон-мезоны) с массами в диапазоне 9.5  11 ГэВ  Y (9460), Y (10580), Y (11020). Несмотря на большую массу Y (9460) имел малую ширину распада Г~53 кэВ, т.е. наблюдалась ситуация аналогичная с J/ψ-мезоном. Y-мезоны являются связанными состояниями кварков b и обладают скрытой красотой (квантовоe число b (beauty, bottomness)). Массу b-кварка можно оценить как половину массы Y (9460) т.е. 4700 МэВ, b-Кварк является тяжелым аналогом d и s кварков. b-Кварк порождает новое семейство адронов, имеющих в своем составе этот кварк или антикварк. KEKB ускоритель, представляющий собой несимметричный электрон-позитронный коллайдер. Энергия пучка электронов 8 ГэВ, позитронов  3.5 ГэВ, что эквивалентно энергии сталкивающихся пучков в системе центра масс 10.58 ГэВ. Эта энергия соответствует энергии образования Y (4S) -ипсилон мезона. Ускорение электронов и позитронов происходит в одном туннеле длиной 3016 метров. Ускоритель KEKB имеет рекордную светимость для электрон-позитронных коллайдеров L = 2.11·1034 см2с1, что позволяет получать в большом количестве мезоны, имеющие в своём составе b-кварки. На ускорителе KEKB получено большое количество стандартных мезонов, состоящих из q. Однако наряду с этим наблюдалось образование около 10 различных экзотических мезонов, состоящих из двух кварк-антикварковых пар. В частности наблюдались нейтральные состояния X (3872) и Y (4260), имеющие кварковый состав (cu), и заряженное состояние Z (4430), имеющее кварковый состав (cu). В 2011 г. в KEKB были открыты новые экзотические мезоны, названные Zb. Zb-мезоны имеют в своем составе b-кварки и являются заряженными частицами. Поэтому согласно утверждению авторов в их состав помимо b-кварков должна входить ещё одна кварк-антикварковая пара. Состояния были названы Zb (10610) и Zb (10650) в соответствии с их массами. В результате e+e  аннигиляции образуются b экзотический мезон Zb и π  мезон. Zb-мезон затем распадается на π+-мезон и Y-мезон. Y-мезон детектируется по его каналу распада на μ+μ  пару. Полученные четырехкварковые состояния мезонов представляют несомненный интерес. Однако в настоящее время существование экзотических четырехкварковых состояний мезонов достоверно не установлено и нуждается в подтверждении в других экспериментах. Существует и два типа W-бозонов  с электрическим зарядом +1 и 1 (в единицах элементарного заряда); W+ является античастицей для W. Z-бозон (или Z0) электрически нейтрален и является античастицей сам для себя. Все три частицы очень короткоживущие, со средним временем жизни около 31025 секунд. Эти бозоны  тяжеловесы среди элементарных частиц  с массой в 80,4 и 91,2 ГэВ, соответственно. W± и Z0-частицы почти в 100 раз тяжелее протона и близки к массе атомов рубидия и технеция соответственно. Масса этих бозонов очень важна для понимания слабого взаимодействия, поскольку ограничивает радиус действия слабого взаимодействия. Электромагнитные силы, напротив, имеют бесконечный радиус действия, потому что их бозон-переносчик (фотон) не имеет массы. Все три типа бозонов имеют спин 1. Испускание W+ или W-бозона может либо повысить, либо понизить электрический заряд испускающей частицы на 1 единицу и изменить спин на 1 единицу. Z0-бозон не может менять ни электрический заряд, ни любой другой заряд  только спин и импульс. Тот факт, что W и Z-бозоны имеют массу, в то время как фотон массы не имеет, был главным препятствием для развития теории электрослабого взаимодействия.

Мезоны участвуют во всех известных типах взаимодействий. Поэтому их структурный состав в основном представлен частицами в состоянии с целочисленным спином. На фиг. 2.16 приведены схемы мгновенных структур фазовых замкнутых объёмов мезонов. В динамике движения магнитных зарядов, образующих мезоны в свободном пространстве, возможно самое широкое многообразие таких форм, зависимых от полей окружения.


Фиг. 2.16. Схемы π  мезонов и структуры их волноводов


π˚ нейтральные (первая и вторая позиции слева сверху на фиг. 2.16), плюс и минус мезоны (позиции справа) нестабильны и имеют спин равный нулю.

Нейтральные мезоны  это промежуточное состояние замкнутых распадающихся оболочек ядер, образованные парами переходных ядерных и противоположных магнитных монополей, которые уже неспособны создавать даже нестабильные частицы с полуцелым спином. Эти монополи аналогичны тем, которые создают частицы со спином 1/2  электроны, позитроны и мюоны, но стабильно существовать могут только в составе ядерных оболочек атомов, запертых от распада заряженными мезонами внешних оболочек. Однако их частоты и соответствующие размеры существенно выше и меньше названных. Пары из таких частиц, как и куперовские пары из электронов и электрон-позитронов (фиг. 2.12), в свободном состоянии способны лишь образовывать нестабильные частицы с нулевым спином и суммарным гравитационным зарядом  массой покоя мезонов.

Заряженные мезоны  это остатки распадающихся внешних оболочек ядер, которые образованы парами с одинаковым зарядом соответствующих магнитных монополей, образующих структуру частицы с нулевым спином (фиг. 2.16, справа), т. е. частицы, у которых электрический волновод, с одной стороны жёстко сцеплен с ядром, а с другой стороны другой его магнитный монополь формирует во внешнем пространстве над ядром заряженный волновод (фиг. 2.20)  его электрическое поле. Масса этих мезонов равна соответственно 139,56 и 139,567 Мэв, соответственно, а размер фазового объёма (геометрической пространственной структуры) немного меньше размера мюонов и во много раз меньше соответствующего размера электронов.

Нейтральный (π-ноль) мезон имеет массу 134,96 Мэв и распадается за время 0,83х 1016 с, превращаясь в два гамма кванта (Фиг. 2.17). При этом, следует особо отметить, что рождение пар мюонов, позитронов и электронов гамма-квантом в поле атомного ядра и противоположные им реакция распада-деления π-ноль мезона на два кванта, а также аннигиляции этих пар, однозначно подтверждают предлагаемую здесь структуру микрочастиц, непосредственное участие в создании которой берут на себя микровихроны.

Заряженные мезоны распадаются за время 2,6 х 108 с, превращаясь в одноименно заряженные мюоны и соответствующие нейтрино.

На фиг. 2.17 показаны схемы распада мезонов.


Фиг. 2.17. Схемы распада π-ноль и заряженных мезонов


Непрерывное изменение параметров вещественной материи этих частиц происходит через сохранение средней энергии при самоиндукции зарядов энергии из формы покоя

Назад Дальше