Миллион просмотров. Как увеличить охваты коротких видео - Ирина Гольмгрейн 2 стр.


В книге приходилось торопиться читать подробные характеристики Косого переулка, прежде чем вернуться к основному сюжету. В фильме главные герои идут по переулку, события развиваются, а зритель попутно изучает архитектуру локации и местные нравы.

В экранизациях не требуется долгое описание происходящего эпитетами и метафорами. Зачем тратить страницу на портрет персонажа, если его внешность можно разглядеть за пару секунд?

Неуместны затянутые введение и заключение. Короткий жанр позволяет сразу начать с сути. Детали не воспринимаются в устной форме. Достаточно сказать главное, а подробности дать надписями и субтитрами. Кому интересно, поставят на паузу и прочитают.

К тому же с помощью мимики, жестов и интонаций можно передать эмоциональную часть сообщения, не нагружая речь дополнительными оборотами.

Как бы ни хотелось подробно и развернуто вещать о событии или продукте, придется выбирать: короткий рассказ на большую аудиторию или детали, которые не увидит никто.

Помните про досматриваемость. Ролик с парой лишних деталей зрители жестоко свайпнут, потому что скучно. Он не попадет в «реки», и никто его не увидит. Пусть будет короче и максимально упрощенно, зато завирусится и получит широкий охват.

У вас целый канал: можно каждую ценную деталь упаковывать отдельным материалом. Это даст больше единиц контента. Рекомендательные системы любят краткость и регулярность. Регулярные публикации повышают шансы на просмотры.

1.4. Резюме

Короткое видео  это не подвид длинного, а абсолютно новый жанр, который сейчас активно развивается.

Спрос на вертикальные клипы превышает предложение  сегодня у вас есть шанс попасть в категорию «раннее большинство» и занять нишу.

В клип можно превратить какой угодно инфоповод, а 60 секунд  это вечность.

Количество подписчиков перестает играть ключевую роль. В коротком формате пока функционируют «социальные лифты». Любой желающий способен с нуля заработать миллионную аудиторию. Обратная сторона этого эффекта: расслабиться не получится, придется работать над качеством каждого выпуска.

2. Как работают рекомендации?

2.1. Как понять предпочтения зрителя, не вникая в суть ролика?

Нейросети в YouTube.Shorts, VK.клипы, Zen.Ролики, SnapChat, Likee, TikTok, Reels анализируют взаимодействие зрителей с медиапродуктом. Оценивая совокупность факторов, машина решает, что рекомендовать посетителю.

Зарегистрировавшись, новый пользователь увидит нечто универсальное, популярное из Сети.

Практически каждому при первом заходе в TikTok показывается один из приколов Хаби Лейма[5]. У блогера более 135 миллионов подписчиков. Он почти никогда не произносит ни одного слова, играя мимикой, движениями тела, предметами. Такой подход сделал юмор Хаби доступным для людей любого возраста со всего мира.

После реакции пользователя на Хаби Лэйма и другие клипы появляется первая статистика, на которой машина обучается. Причем учитывается любая реакция: спешное пролистывание или досматривание с удовольствием и репост маме. Система начинает догадываться, как задерживать пользователя в соцсети дольше.

Точность рекомендаций увеличивается с накоплением полученных знаний о:

 поведении пользователя,

 взаимодействии других пользователей с медиапродуктом.

Рекомендации точнее, когда о зрителе накоплено большое досье, машина обучилась и знает его предпочтения. Популярные ролики при этом становятся еще популярнее, потому что об их зрителях также собрана приличная база данных.

В какой-то степени этот эффект  слабое место рекомендательных систем. «Богатые богатеют», а неудачные ролики болтаются в пустых аккаунтах с нулями. Мы будем пользоваться этой слабостью и знать: чем больше показов, тем легче раскручиваться дальше. Пробив некий порог просматриваемости, можно безгранично далеко продвинуться. Потолка нет. Для начала давайте хотя бы поверхностно разберемся, что же такое «машинное обучение». В одном из курсов Google.Developers объясняют: в алгоритмах обучения нейросетей используются переменные. Это Label  вещь, которую мы предсказываем, Feature  изучаемые машиной свойства (их могут быть десятки), Example  конкретный набор данных, Model  демонстрирует взаимосвязь между Label и Feature.

Простыми словами, машинное обучение  это когда компьютер, изучая большое количество ситуаций, видит между ними взаимосвязь и повторяющиеся модели поведения. На основе выявленных из опыта закономерностей машина предсказывает поведение объекта в будущем.

Простыми словами, машинное обучение  это когда компьютер, изучая большое количество ситуаций, видит между ними взаимосвязь и повторяющиеся модели поведения. На основе выявленных из опыта закономерностей машина предсказывает поведение объекта в будущем.

Для «эффекта чтения мыслей» нейросети даже не должны понимать суть видео.

Вот как они к этому пришли.

Контекстная реклама  это первое поколение рекомендательных систем. Они анализируют суть и содержание текста с помощью алгоритмов, заданных человеком. В онлайн-курсе Яндекса по контекстной рекламе сообщается: поисковая система анализирует семантику интернет-страниц, а рекламодатель задает ключевые слова для показа объявлений. Исходя из контекста веб-страницы, рекламная сеть подбирает подходящую по тематике рекламу или советует к прочтению статью. Алгоритм не учитывает никакие параметры, кроме контекста.

Контекстный подход для программирования рекомендаций по видеоконтенту оказался неприменимым. Для понимания сути и содержания роликов недостаточно расшифровать звук и затем проанализировать текст. На смысл влияют также эмоции, интонации и визуальные образы. Программисты пошли дальше, пытаясь сканировать надписи и распознавать лица и объекты. Но и это не помогало определять контекст, не говоря уже о точном попадании в несформулированные желания пользователя. Поэтому пришлось решать задачу: «Как понять предпочтения зрителя, не вникая в суть ролика?» Решение этой задачи нашлось благодаря нейросетям и большому количеству накопленных паттернов поведения пользователей.

Нейросеть наблюдает за вашим поведением. Помечает выполнение вами индикативных действий. Индикативные действия у социальных сетей слегка отличаются, но общая суть совпадает: комментарий, репост, досматривание до конца (или резкий свайп с первых мгновений) подписка, переход по тегам или дополнительным элементам (звук, маска). Единственный пользователь в вакууме никогда не начал бы получать качественные рекомендации. Система «look like» не анализирует того или иного человека в отдельности. Она кластеризует по сегментам, отмечает, кто похожим на вас образом взаимодействовал с контентом.

В огромной аудитории быстро находятся люди, которые свайпали или досматривали те же видосы, что и вы. В результате, когда похожим на вас людям понравится клип, система покажет его и вам.

Вы можете одновременно находиться в узких и широких группах по интересам и паттернам поведения. Таким образом, нейросеть совсем не должна анализировать содержание и контекст материалов для качественных рекомендаций. На этом мы и выстроим алгоритм получения бомбических охватов.

2.2. Как заставить нейросеть полюбить ролик?

Каждое взаимодействие человека с контентом система записывает в досье пользователя и в базу знаний о клипе. Поэтому фиксируем, какие действия заставляют нейросеть отмечать ролик как потенциально привлекательный для широкого круга зрителей.

Наиболее явные индикативные действия:

 Долгий просмотр, в идеале  до конца.

 Прокрутка на 23 круга.

 Комментарий, полемика или даже упоминание друзей в комментах, с вовлечением их в дискуссию.

 Приостановка на паузу. Это значит, содержание ценное и нельзя отвлекаться на внешние раздражители. Или нужно приглядеться к каким-то деталям, вчитаться в таблицу, изучить график.

 Переход в профиль. Зрителю настолько понравилось увиденное, что он захотел узнать больше об авторе или полистать другие посты, не дожидаясь, пока они естественным путем попадут в рекомендации (если вообще попадут).

 Подписка, хоть это и не дает гарантии, что автор хоть раз еще попадется в «реках». Помните? Подписка  это продвинутый лайк.

 Скачивание. Допустим, человек решил отправить пост маме или использовать его кадры в своем блоге.

 Переход на звук прокачивает рейтинг трека. После этого пользователю чаще будут попадаться рекомендации с тем же звуком. Для автора музыки это хорошо.

 Переход на маску (эффект, хэштег). Как и переход на звук, углубление в дополнительные элементы говорит о качественном взаимодействии, запуская широкое продвижение.

 Репост или дуэт. Репост в мессенджеры с дальнейшей конверсией в переходы означает не только желание поделиться, но и интерес тех, с кем поделились. Дуэт  инновационная форма репоста, когда комментарий к исходному ролику новый автор оставляет в формате встроенного видео.

Назад Дальше